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Resolvent method for computations of localized defect modes of H-polarization
in two-dimensional photonic crystals
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We have developed and tested a version of the resoli@nGreen’s function method, based on the
shift-inverse of the Maxwellian operator, that ensures stable convergence of iterative computations of localized
defect modes of H-polarization in two-dimensioriaD) photonic crystals. The defect states are obtained by
solving the eigenvalue problem for an associated compact operator with the expansion in Bloch eigenfunctions
of the unperturbed Maxwellian operator. This method can be extended to 3D photonic crystals. We apply the
method to a 2D square lattice of square dielectric rods in a dielectric background and cémiffut®ntrolled
precision of~1%) the defect modes induced by the replacement of onétheddefect. We investigate the
rise and variation of the defect frequencies in a photonic band gap, caused by the increase of the dielectric
strength of the defect, for four branches of localized modes of various symmetries.
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[. INTRODUCTION considers a finite region of a photonic crystal with a defect as
a cell in a periodic superstructure. Combined with the plane-
Photonic crystalgperiodic dielectric structurg@sexhibit-  wave expansion, it has been applied to BB15 and 2D

ing gaps in the frequency spectrum of electromagnetic wavelsL6] systems, and the narrow frequency bands induced by
have attracted significant attention in recent ydars5|. A defects have been obtained. The time-domain integration
problem of localized waves with frequencies arising in themethods have been applied to simulate the excitation of
gaps due to an isolated defect in a photonic crystal is of-Polarized defect modes in 2D photonic crystals, using nu-

special importanc6,7]. Such modes, called defect modes, Mmerical solution of Maxwell's equations in a finite region
were observed experimentally for microwaves for a threeWith either periodid17-19 or absorbing 20,21 boundary

di [ 3D tem[8], for 2D system$9-11], and f conditions. -
aITSnsS)I/Z?earf[Q]) system8], for 2D systems I, and for The resolvent metho(bften called the Green’s function

Photonic crystals with defects can be useful in a variety o{nethod when used in the coordinate representpgjives an

. : . . exact mathematical treatment of the defect modes in an infi-
devices such as resonators, filters, switches, waveguides, aﬂﬁ

[2.4.5. Th licati e th hth tical e medium with a localized perturbation. It was first devel-
more(z,4,9. These applications require thoroug eore.'caoped for electron systems described by Sdhrger’s equa-
analysis of conditions for the rise of a localized mode in

ion (see, for instancé22]). In general, the spectral problem
gap and of the dependence of its frequency and of the local- ( 422)).Ing P P

ization rate on the parameters of the photonic crystal. A=\ 1)
Two-dimensional photonic crystals are of special interest )

[9]. Such structures are much easier to fabricate than 3[$ considered for a perturbed operator

structures while they still allow many important applications. A=A-+A %)

Theoretical analysis for 2D photonic crystals is significantly o

simpler than for 3D structures because a 2D dielectric systefyhere the spectral system for the unperturbed operajos

has two fundamental types of modes, E polarized and Hnown. The resolvent approach to finding the mogesith

polarized[12], for each of which the problem reduces to a\ in the gaps of the spectrum &f, (the defect statgss to

one-component wave equation for E field or H field, respecrecast the equatiofl) with (2) as follows:

tively.

Analytical and numerical computations of the spectral SN ¢g= 1, 3
system of a periodic dielectric structure with defects is a .
challenging problem. Analytical methods have been devel- S(N) == (Ao—Al) " Ay, (4)

oped for 1D structures. The simplest configuration of such a i ) )

layered system with a defect was studied using transfer mavhere the first factor irg(\) is called the resolvent operator

trix method[9,13], and a general configuration of a layered for Ao- _ _

system was considered using propagation matrix method Numerical solution of the equatiaB) for A andy, where

[14]. No analytical solution is known for 2D or 3D photonic the spaceC of functionsy(r) is infinite dimensional, can be

crystals. obtained using reduction of operatSrto an N-dimensional
There have been three major approaches to numericaubspaceCy of £ and then increasindy to reach necessary

computations of the defect modes in photonic crystals: therecision forn and . (For example, this can be done using

supercell method, the time-domain integration, and the resol discrete basis i with increasing numbeN of functions

vent (or Green’s functioh method. The supercell method retained for the matrix representation®j Convergence of
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such an iteration procedure is guaranteed onfyif a com-  because there are two nonzero components of E field de-
pact operator, that is, such operatsee items 1 and 2 of list pending on the same pair of coordinates, the divergence-free
in Sec. A2 that its reduction to aiN-dimensional subspace condition is not automatically satisfied. At the same time, an
Ly converges normwise to the operator itself\is> and  iteration procedure for numerical computationshoéind ¢,

Ly becomes the entire spage based on the expansion in eigenfunctions of the unperturbed
For electrons in a crystal with a localized defect, Sdhro operatongzsgl(F)ﬁxﬁx, with increasing number of
inger’'s equation represents the spectral problem for a pethe eigenfunctions retained, converges to functions satisfying

turbed Hamiltonian operato¥{=",+ H,, where the unper-  the condition V-&o(r)E(r)=0 instead of the exact
turbed part |n£:Iudes dlffgrennatlon of the second ordé(;,. divergence-free conditior¥ - ()E(F)=0. The resolvent
=—aA+Ug(r), whereais a constant, and the perturbation approach with E-field formulation to a 3D photonic crystal
part is an operator of multiplication by a localized function, w|| face the same difficulty.

H,=U4(r). In this case(see Sec. A l)jathe corresponding In this paper, we develop such version of the resolvent
operatorS (4) is compact. method with H-field formulatiorisee Sec. Il A that the cor-

For the electromagnetic field in a dielectric medium, theresponding operatds is compact. The approach is based on
spectral problem for time-harmonic modes can be considerean equivalent representation of the spectral probl&nfor
either with electric field E(r) for the operator M® M in terms of the shift-inverse operatoM(’+mgl)~*

—s L(F)VX VX or with magnetic fieldi(r) for the opera- [23,24]. We first implement this method for a 1D systéas

H o Go 1S . . . a tesj and then for H-polarized modes in a 2D photonic
tor M7=V xz™(r)V X, with an additional divergence free crystal, with the divergence-free condition being satisfied au-

condition V-&(r)E(r)=0 or V-H(r)=0, respectively. In  tomatically(for H-field formulation. We observe stable con-
either formulation, the perturbation operatdn,=M—Mo,  vergence of the iteration procedure for computations of the
corresponding to a localized perturbatigdefecy e,(r) defect states. The same version of the resolvent method with
=¢(r)—eo(r) of the dielectric function, is also a second H-field formulation can be applied to a 3D photonic crystal
order differential operator, ME=y(")VxVx or MY (€€ Sec. Alpwhere the divergence-free condition can be
- - = satisfied by using the expansion in eigenfunctions of the un-
=VXy(r)Vx, where perturbed periodic operatdd} [27].
¥()=e" ()~ e (1) = —ex(M)/eo()e(r), Il. BASIC EQUATIONS
which balances the operatdt, in the resolvent factofsee The description of the dynamics of the electromagnetic
Eq. (4)]. Because of thdtsee Sec. A 1ki)], the correspond- field in a lossless dielectric medium can be reduced to the

ing operatorS is not compact, and the convergence of nu-y4ve equation for the magnetic field Ht)
merical computations based on a straightforward application

of the resolvent method to the operadris not guaranteed 1
220 @ S D
[23,24. ¢ 29?H=—-VXx——=VXxH, (5)
Nevertheless, for E-field formulation, the perturbation e(r)
term in the spectral equation can be represented as a result of _ o
multiplication by a localized functioflike in Schralingers ~ Wherec is the speed of light in vacuum and
equation,

e(r)=0, (6)
EE=y(NVXVXE=y(re(r)MEE
MIE=7(NVXVXE=7(n)e(NM"E with an additional divergence-free condition
=—g,(reg {(r)\E, o

V-H(r,t)=0. (7)
assumingE(F) is a solution of the spectral equatidm® E
=\E. Therefore, the spectral problem for defect states can A. Two-dimensional system
be represented in a form of E() with a modifiedS opera- We consider an infinite dielectric medium that is homo-
tor, S(\)=(Mg—NI)"*\eg *(r)e,(r), which is compact. geneous along one axighosen to be the axis), so the
Such resolvent approa¢bombined with the plane-wave ex- dielectric function depends on the two transversal coordi-
pansion for the unperturbed spectral systéras been suc- nates only:
cessfully implemented for a 1D layered medi{ity13] and
for E-polarized modes in a 2D photonic crysfab], where e=e(Xy). 8
there is only one nonzero componentifield and no de-
pendence on the corresponding coordinate so the divergenceor such a 2D medium, we consider here only such solutions
free condition is satisfied automatically. of the vector wave equatiof) that depend on the two trans-

Similar resolvent approach with E-field formulation has versal coordinates only,

been attempted for computations of defect states for o
H-polarized modes in a 2D photonic crysfab]. However, H=H(x,y;t), 9
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e=¢g(X). (19

For such a 1D medium, we consider here only such solutions
of the vector wave equatiofd) that depend on the coordi-
nate only,

€

H=H(x,1), (16)

and have a nonzero component along one transversal axis
only (chosen to be the axis for each such solution

Hy=H,=0, (17)
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representing linear polarized electromagnetic waves propa-

----------------------------------------------------------------------------------- ' gating(or localized along thex axis. For such a solution, the
FIG. 1. A fragment of the cross section of a rectangular geom€duation(5) reduces to theqfollowmg scalar 1D wave equa-

etry 2D photonic crystal with a defect. The bold dashed rectangldion for the z component of K

shows a primitive cell chosen for computations; a lighter dashed

rectangle shows a symmetric primitive cell. P 1

C “dH,= ax_s(x) dyH,, (18

representing electromagnetic waves propagatimyglocal-

ized in the x,y plane. There are two fundamental types of where —«<x<o, and the conditior(7) is satisfied identi-

such solutions: H-polarized modes and E-polarized modegally.

[12]. In this paper, we study H-polarize@r TE) modes We will study a periodic 1D medium of a periddwith a

where His parallel to thez axis, defect of finite thickness. In terms of the dielectric function

e(x) this can be represented as follows:

Hy=H,=0. (10
: : . 8(X)=go(X) +£1(X), (19
For such solutions, the equati¢®) reduces to the following
scalar 2D wave equation for tirecomponent of H go(X+L)=¢gq(x), (20
1 1 £1(X)#0, xe(a,b), b—a<ox. (21)

c 207H,= H,, (11

Mooy T ey Y

. . e C. Time-harmonic modes
where—o<x, y<oo, and the conditiorn7) is satisfied iden-

tically. We consider time-harmonic fields,
We will consider a 2D periodic medium with a rectangu-
lar primitive cell and with a finite rectangular defect region.
In terms of the dielectric functioa(x,y) this can be repre-
sented as followgchoosing the axes of the cell to be tke r=(xy)
axis and they axis):

H,(r;t)=(r)exp —iwt)+c.c., (22
for d=2, r=(x) for d=1, (23

for which the wave equatiofi1) or (18) reduces to the spec-

e(X,y)=eo(X,y) +£1(X,Y), (12) tral problem for thed-dimensional gcalar .Maxwellian opera-
tor M (d denotes the number of dimensions for the sygtem
go(XtLx,y)=go(X,y+Ly)=e0(X,y), (13 M (r) = mi(r) (24)
e1(x,Y)#0, (xy) € (ac,bo) X (ay,by), with
(by—ay),(by—ay)<e. (14) m=(w/c)?, (25)

A simple configuratioriEgs.(96),(97)] of such a mediumis  here
shown in Fig. 1. In general, the resolvent method developed

in this paper can be applied to an arbitrary configuration of a 1
2D periodic dielectric medium with a localized defect. M= —{2; 5am3a, (26)
B. One-dimensional system {at=x,y for d=2, {a}=x for d=1, (27)

As a test system for our method, we consider an infinite
dielectric medium where the dielectric function changesis a non-negative self-adjoint operator in the spad@”) of
along one axis onlychosen to be th& axis), functions y(r) (—oo<r <o) with the inner product
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k=(ky,ky) for d=2, k=(k,) for d=1 (37
<¢1,w2)=fdwt<r)w2<r>ﬂ dr,,, (28) o "
R {a} (e, is a unit vector along am axis). Such functions can be
=X, Ty=y. (29) expressed in the form

— AlQg-r —
For a system of homogeneous regions where the dielectric U =eTTudr), - ga=Ka/la, (38)
function e(r) is piecewise constant, an operator of the form U(r+L,e,)=uyr), (39)
(26) can be understood in terms of the corresponding func-
tional: given a functiony, e L?(RY), the operatoM defines representing modulated waves of,(Ht) [see Eq.(22)]

the inner product propagating along the,y plane ford=2 or along thex axis
ford=1.
The spectral probleni35) for the operatoiM, (32) with
M) = dq dr, L 0 .
(1. My2)= j lﬁl(f)( E (f) ) l’/,Z(r)H ' the condition(36) can be solved for eadh separately, being
reduced to one primitive ce(,
“Jozm o) 2 v (Mol dr Moto(r) = Mo(K) (1), (40)
(30)
reQ=]I (OL.l, (41)
with any functiony, e L?(RY), provided the right-hand side {a}

exists with those functiong(r) and y,(r). . o
According to the form(le)(—zm) o;ﬂég))_(zl) of the di- where ¢, (r) has to satisfy the Bloch boundary conditions

electric function, the Maxwellian operatdf can be repre- Yo' +Le,)=eKe (')
sented as a sum, o

Jathor(r" + L o8,) = €™ed i (1),

M=My+M, (31
where r'=r a'€a’ s ra/E(O,La/], a' Fa. (42)
1 All values ofk yielding different solutions of the eigenvalue
_E 9y——0 (32) problem(40)—(42) fill the Brillouin zone,
{a}
keP=[—,m]". (43
is a Maxwellian operator for an unperturbed periodic me-
dium [see Eq(20) or (13)] and According to Eqgs.(28) and (36), any two Bloch functions
with differentk e P are orthogonal,
_{Z‘} 9 Y(N)dq (33 (Y1, o) = (2 S(K=K") (ka0 » (44)
is the perturbation for the Maxwellian operator due to theWhere
defect, with
<wl,¢2>q=f i (0] dry, (45
" 1 1 —e4(r) 20 Q {a}
r)= — =
4 e(r) eo(r) e(r)eo(r) is the inner product in the spade’(Q) of functions y(r)
considered on one primitive ce.
for re DEQ} (8q,0,). (34) For every fixedk, the solution of the eigenvalue problem
(40)—(42) forms a discrete system,
D. Structure of the spectral system for the periodic medium {¥onk(r),me(n,k)} (n=1,2,...0), (46)

For further reference, we remind here some facts of the
spectral theory of periodic self-adjoint operatdsee, e.g.,
[22]) applying it to the Maxwellian operatdB2). The spec-
tral problem for the periodic mediufwith periodsL ,, see
Eq. (13) or (20)],

mo(n+ 1k)=mg(n,k), (47)

wheren enumerates the eigenfunctiogs, (r) in the as-
cending order of the corresponding eigenvalumes(n,k),
counting each multiple eigenvalu@ any) the number of
_ times(in a row) equal to its multiplicity; there may be some
ry=m r 35
oto(r) o¥ol() 39 multiple eigenvalues for a 2D system due to some extra sym-

can be solved with piecewise differentiable continuous funcmetry (e.g.,L3 ,=LJ ,), while for a 1D system there are no

tions y,(r) that possess the Bloch property: multiple eigenvaluegfor the samek). The set(46) of func-
tions o, x With the samek forms an orthogonal basis for
Uil + L ge,) =Xy (1), (36 L*Q),
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(59

w=(m+mg) 1,

assuming that the set of linear independent eigenfunctionis equivalent to the original spectral problég#) in terms of
corresponding to the same multiple eigenvalue is chosen tl.

be orthogonal.
Consequently, the solution of the spectral problesB)
for the periodic operatdvl, in L?(RY) has the band structure

{donk(r),mo(n,k) | ke P=[—m,m]%} (n=12,...),

(49

wheren enumerates the bands; for each fixgdthe value
mo(n,k) spans a spectral band wh&nspans the Brillouin
zone.

The system(49) of Bloch eigenfunctionsjg, ((r) forms
an orthogonal basis in?(RY) [see Egs.(44) and (48)],
which will be orthonormal,

(‘pOn,kawOn’,k’): 5n,n’5(k_k,)-

if we choose

(50

Cy=1/(2m)". (51)

We also introduce the shift-inverse for the unperturbed
operatorM,

Wo=(Mg+mgl) ™4, (56)
and consider the perturbation of the operatdr
W, =W-—W,. (57)

The spectral problent54) with (55) for the defect states
my, ¢4 in the gaps of the unperturbed spectrum,

Mgy & SpectruniMy), (58
is equivalent to the following equation:
S(mg) ra(r) = hg(r), (59
where
S(m)=—(Wy—wl) W, (60)

For certain configurations of the periodic medium, there can
be gaps between the spectral bands. Existence of gaps in thi&e resolvent factor ifs(m) can be represented in terms of

spectrum was proven if28,29 (under certain conditions
for a 2D periodic medium of a rectangular geometag in
Sec. IVB) and in[14] for a two-layer 1D periodic medium.

Ill. THE RESOLVENT METHOD

the operatoM, and with an explicit dependence om[see
Egs.(56) and(55)]:

(Wo—wl) 1=—(m+mg)(Mg—ml) " {(My+myl).
(61)

We are interested in the defect states that are such sol@Plutionsmy, ¥ of the equation(59) for the defect modes

tions of the spectral problen24)—(26) for the perturbed
operatorM that the eigenvalues are located in the gaps o
the spectrum of the unperturbed operalibg (32) and the
eigenfunctions/(r) are localized irr [24,30.

A. Formulation for the shift-inverse of the Maxwellian
operator

To use the resolvent method for computations of the de-
fect stategsee Sec.)| we introduce the shift-inverse of the

Maxwellian operatoM (as proposed ifi23,24)),

W=(M+mgl) 1, (52
where the shift by a constant
mg>0 (53

is necessary because the spectrum of the non-negative opera-

tor M (26) starts from zero; an optimal value afs (to be

can be effectively found in the following way: first, we solve

¢ the eigenvalue problem

S(p)W(r;m)=s(u)W(r,u) (62

for the operatoiS(x) with the parametep taking an arbi-
trary value in a gap of the unperturbed spectrum,

S(p)=(p+mg)(Mo—ul) " H(Mo+ms)Wi,

& SpectruniMg);

(63)

(64)

then, we find the defect spectral valuag from the equation
s(mg)=1; (65

finally, we obtain the defect modefg, by substitutingmy for
Ma

Pa(r)=W(r;my). (66)

specified laterwould be of order of width of the first spec- The equation(57) for the perturbation of the shift-inverse

tral band. AnS operator corresponding to the operatr

operator can be represented in the following fdsee Egs.

will be compact while it would not be compact for the op- (52), (56), and(31)]:

eratorM itself (see Secs. | and Al)bThe eigenvalue prob-
lem for W,
Wis(r)=wi(r) (54

with

W]_: -WM lWO' (67)

Hence, a matrix or integral representation for the operator
W, can be effectively found by solving the following equa-
tion [see Eqs(52) and (56)]:
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(M+my)W;=—M;(My+mgl) L. (69) ”
Z f Ml(n,k;n’,k’)Wl(n’,k’;n”,k”)H dk,
The operatoW; (67) is compact since it has two resolvent n'=1-P {a}
factors[see Eqgs(52) and (56)], with M (26) or M, (32), +(mo(n, k) + MW, (n,k:n” k")
versus one factavl; (33) with a localized functiony(r) (34)
[see[23,24 and Sec. A1li)]. Consequently, the operator =—My(n,k;n" k") (me(n" k") +mg) %,
S(w) (63) is also compact and its spectrum is purely discrete nn"=12...%, k,K.e[-mm], (72

[see Sec. A1K) and item(3) of list in Sec. A 4. Therefore,
the convergence of an iterative numerical solutisee Sec. \yhere Eq.(31) is taken into account and
I) is guaranteed for both the equati¢®8) for W, and the
equation(62) for the spec_tral_system _(S(,u). _ M1(n,k;n’ k") = (%onk-M1ton’ k1)
If the operatoM; (33) is sign definitg the simplest real-
ization is wheres4(r) is sign definite, see Eq34)] then the
self-adjoint operatoiw,; (57) is also sign definite with an
opposite sigridue to Eqs(52), (56), and(31)]. Hence, each
eigenvalues(w) of the operatoS(w) (63) is real and mono-
tone inu (within a gap of the spectrum ofl ;). This can be
shown by reducing the equati@62) to the eigenvalue prob-
lem for a self-adjoint operatot (=W,)*2S(u)(=W,) 2 s the kernel matrix of the perturbation operali [see Egs.
[see Eq(63) and[23,24]] that is monotone in, increasing  (33), (34), and(30)].
for positive W, (upper sign or decreasing for negative/, We would like to emphasize that the application of the
(lower sign. Therefore, the equatiof®5) will have at most resolvent method implies that the spectral sys¢é@ for the
one solutionmy in each gap of the spectrum bf, for each  unperturbed periodic operatM, is found prior to the com-
eigenvalues(u). putation of the defect states. Some useful information on the
current sate of the photonic band structure computations can
B. Bloch representation be found in[36] and in references therein.

= [ 703 Guton)
D {a}

x(aawow,mr)){ﬂ} dr, (73

It is convenient to take the syste9) of Bloch eigen-

functions of the operatdyl; as a basis for the representation C. Numerical analysis

of the equation$62) and(68). An eigenfunction¥ (r;u) of Solving the systeni70), we find a functiors(u) on a grid
the operatorS(u) represents with its Fourier coefficients of valuesu within a gap and then solve the equati@) for
{a(n,k;u)}, a defect spectral valuay using an appropriate interpolation.

. We refine the grid to reach necessary precisionnfigr
_ _ The infinite system of homogeneous integral equations
‘P(r'“):nzl Pa(n'k'“)%nvk(r)g dks, (69 (70) is solved iteratively. We discretize the integrationkip
over[ — ], using an appropriate quadrature rule with the
and the equatior62) yields the following system of integral duadrature abscissas and weighks,w;} (j=1.2,...K)
equations for the coefficiena(n,k; u)}: corresponding to the partition numbkr, and truncate the
summation inn with a numberN,. For fixedK andN; we
* obtain, at each fixed value @f within a gap, the following
E S(n,k;n’,k’;M)a(n’,k’;M)H dk!, finite homogeneous system of linear algebraic equations for
n'=17P la} the unknown coefficientsa(n,k; ; u)}:

=s(u)a(n,k;u),

N1
> 2 Sinkn’ ki sman’ ks [T wy
n=12,...%, k,el[—-mm], (70 n=1 j’ {af @

where
S(nlk;nlak,;ﬂ):(dfOn,klS(/J’)lpOn’,k') n:1,2,...N1, ja=1,2,...K, (74)
=(u+mg)(mg(n,k)—p)~* i=(wdy) Ki=(kj k) for d=2,
X (mg(n,k)+mgyW;(n,k;n’ k") o
71 =0, kj:(kix) for d=1. (75
is the kernel matrix of the operat®(x) (63). The system74) forms the eigenvalue problem for the matrix

The equation(68) yields the following system of integral S(N.Kj:n" . Kj:; ) I yw;: (of a finite sizeN;K*) with eigen-
equations for the kernel matriw/y(n,k;n’,k") of the pertur-  vectors{a(n,k;;u)},; and eigenvalues(u). We solve it
bationW, of the shift-inverse operator: using a specialized standard library routine.
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Because the operat@( ) [the eigenvalue problert62)  We solve the systert¥7) using a specialized standard library
for it is represented by the systgif0)] is compact, its spec- routine. Then, we obtain the square matrix
trum is discrete with zero being the only possible limit pointW,(n’,k;. ;n”,k;») (n",n"=1.2,... Ny, iosin
[see item(3) of listin Sec. AJ, and any eigenvalug,(u) of =1,2,...K) [needed in the equatioli74)] just as the
the truncated discretized systeid) (with fixed numberg, square partin n’) of the solution matrix of the systeK77).
where g enumerates the eigenvalues in descending prdeBecause the operatdl/; [an equation(68) for it is repre-
approaches certain limit with the increasekofandN,, as  sented by the systerf72)] is compact, the obtained square
well as the corresponding eigenvecfar,(n,k;;u)},; does  matrix with fixed N, approaches certain limit with the in-
(completed with zero components for smalgrandK). We  crease ofN, and K. We increaseN, and K until reaching
increaseK andN; until reaching necessary precision for an necessary precision for the square maix(n’ k; ;n” k;)
eigenvalue of interest and for the corresponding eigenvectqthat can be evaluated based on the norm of the difference
(the latter can be evaluated based on the norm of the diffelsetween the iteration results
ence between the iteration result¥hen, the corresponding Practically, we control the precisidwith respect to itera-
approximation for the eigenfunction of the operau) tions in N;, N,, andK) for the final result{based on the
associated with that eigenvalue can be obtained from Egsolution of the systeni74)], which is a defect spectral value
(69): my [due to the equatiof5) with the condition(58)] and a
vector {a(n,k;;mg)},; representing the corresponding
eigenfunctionyy(r) [see Egs(66) and (76)]; the precision

Wa(ripm)~ 2 > ag(n.k; ;M)lﬂOn,kj(r)H wi for a vector{a(n,k;;mg)},; can be evaluated based on the
=11 ) tef norm of the difference between the iteration resuttsm-
(Ja=12,...K). (76)  pleted with zero components for smalls; andK).
The computation of the kernel-matrid(n,k;n’ k")
To know the matrixS(n,k;;n’,k;. ;u) in the left-hand side (73) involves differentiation and integration i, of oscillat-
of the system(74), we need to findsee Eq.(71)] a square ing functionsq, (r) (the higher then, the faster the oscil-
matrix ~ Wy(n,kj;n" ki) (n,n"=12,... Ny, .., lations. To efficiently carry out the computations, we need
=12, ... K) by solving the systen(72) with necessary pre- the eigenfunctionsjy, «(r) of the unperturbed periodic op-
cision. eratorM g to be found(with necessary precisigin the form

The infinite system(72) of nonhomogeneous integral of superposition of a moderate number of analytically known
equations of the second kind is solved iteratively. We disfunctions.
cretize the integration ik, , using the same quadrature rule
as for the systeni70) with the same partition numbé&t, and
truncate the summation in with a numberN,=N,, where
fixed N; is the number of bands retained in the syst&wd). A. Layered one-dimensional system
For fixedN, andK we obtain the following finite nonhomo-

geneous system of linear algebraic equations for the entries As atest system for_the resolvent method, we pon5|der the
of a rectangular matrix Wy(n' .k, in"k.) (0 Simplest periodic medium of the typ@9)—(21) with two

_ pal Sy ] homogeneous layer@f thicknessL,; andL,) of different

=12, N2, n"=1.2,.. . Nas Janfo =12, K): dielectric materials in the period ce(bf thicknessL=L,

N, +L,), where one cell is replaced with a homogeneous layer
n! L VI of a third dielectric material. For such a configuration, the

2 2 Alnkjin' ki) Wa(n' ki in” kj) dielectric function(19)—(21) specifies as follows:

Np

IV. APPLICATION TO CERTAIN MEDIA

n"=1 j’
:B(n,kl‘ ;n",kjn) (j;=1,2, e K), SO(X):Gl, XE(O,L]_),
n=12,...N,, n"=1.2,...Nqy, jarin=12,... K, ego(X)=€,, xe(Lq,L), (80
(77)
g1(X)=€3—eo(x)¥#0, xe(0L). (81

with the following square matrix of coefficients:

For such a system, we have obtained analytically the solution

A(n,k;;n’ ki) =My(n,k; ;n’,kjr)H w;- for both _the unperturbed _and the _perturbed eigenvglue_ prob-
{a} ¢ lems using the propagation matrix methiddi]. We find it
convenient to represent the spectr(26) of the Maxwellian
operator(26) in terms of the dimensionless frequenecyas

follows:
and with the following rectangular matrix in the right-hand

side:

+(Mo(n,K)) +Mg) S 0/ 60, (78)

V:L]_ 61m=n1L1w/C, (82)

B(n,ki ;n",kj//) =—M 1(n,k]- ;n",kj//)(mo(n”,kjn) + ms)il.
(79  wheren;= ¢ is the refractive index of a dielectric material.
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TABLE I. Results of computations of the gap edges and the defect siatesms of the dimensionless
frequencyv=wn,L,/c) for the first three gaps for a 1D systemlat/L,=0.5, n,/n;=2.5, andnz/n,
=35(n;= \/;i). ng is the gap number( ,v,) is the gap intervaly, is the defect frequencfPMM and RM
stand for the propagation matrix method and for the resolvent method, respéectivetythe resolvent
method K is a partition number for discrete integrationkimA « is the corresponding evaluated absolute error
for v4, N; or N, is the number of bands retained in Eq4) or Eq. (77), respectively,A; or A, is a
corresponding evaluated absolute error i#gr

Ny v andy, vy, PMM vg, RM K Ay N4 Aq N, A,
1 1.006 1.084 1.086 10 0.0003 10 0.0002 60 0.0008
1.780 1.442 1.444 8 —0.0004 10 0.0005 80  0.0009
2 2.667 2.807 2.813 12 0.0013 15 0.0008 80 0.0023
2.929
3 3.842 3.976 3.980 8 —0.0024 20 0.0014 100  0.0030
4.518 4.332 4.342 8 0.0015 20 0.0018 100  0.0038
1. Analytical solution of the spectral problem for the periodic 7,(v)=sin(v)cogrv)—p cog v)sin(rv), (89
medium

The spectrum{m,} of the unperturbed 1D operatdd,, v=wgn(k). (90)

(32) is given by the following equation for the corresponding The constanir,(k) (which can be taken as real-valyed

frequency variabler, [see Eq/(82)]: determined by the conditio(b1) [see Eqs(48) and(45)]:
n(vg)=cogk), —msksm, (83 1 1o
_ My Y12
where O'n(k)z ZWJO dX| '//On,k(x)| . (91)
n(v)=cogv)cogrv)—psin(v)sin(rv), (84) Results of computations of edges for the first three daps
terms of the frequency variable are shown in Table | for
p=(p+p 12, r=pA, p=ny/n;, A=L,lL,, L,/L;=0.5 andn,/n,;=2.5.
n;= \/Z, . (85 2. Computation of the defect states

(a) Resolvent approachntroducing a one-cell defect as

Using the phase-amplitude representationsfer) [14], we in Eq. (81), we look for the defect stateg, in the first three

have shown that the frequency spectrum has bénggk),
ke[—m, 7]} (n=1,2,...)with a gap between each two
consecutive bands. We can fimg,(k) for anyn solving the
equation(83) numerically.

The corresponding Bloch eigenfunctioifg,, ,(x) can be
easily found by solving the one-dimensional equat{df)
[see Eq.(32)] on a one-cell interva]O,L] with the Bloch
boundary condition$42),

Il C. We considere;=max(e;,€,) SO the perturbation func-

s(u) of the operatoiS(w) is real and increasing function of
n (see end of Sec. Ill A Because the width of the first
spectral band of the operatht is close to 1 in terms of the
frequency variabler (see Table), we take such value for the
shift constanimg [see Eqs(52) and(53)] that corresponds to

Yonid¥) = oK) Jon WLy, X=xILy, LiL=1+A, V= 1[see EalB2)]

(86) me=1/e;L2. 92)
Pon 1 (X) =[ n2(v)cog vX) +{e*— n;(v)}sin(vX)], We compute the perturbation matriM;(n,k;n’ k') (73)
0o<x<1 (87) analytically, using the formula$86)—(90) for the Bloch
’ functions g (X). The unperturbed frequency spectrum
= v)cog v) +{ek— p(v)}sin(v) von(K) is computed by solving the equatid83) with (84)
[ra(v)eody) +{ m(v)sinG)] numerically (with relative precision of~10"1%%4).
x cog pr(x—1)]+ p[ — 7o(v)sin(v) We observe a close to exponential convergence of com-

, . putations of the defect frequencieg [see EQ.(82)] with
+{e*—n1(v)}cogw)Isin pr(x—1)], respect the increase of the numbhirsandN,, of bands used
in the equation$74) and (77), respectively, and of the par-
1<x<1+4+A, (88 tition numberK (using the midpoint rule for the discrete
integration ink). Results of computations of the defect fre-
n1(v)=cogv)cogrv)—psin(v)sin(rv), quenciesyy in the first three gaps at,/L;=0.5, n,/n;
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=2.5, andnz/n;= 3.5 are shown in Table |. These values eo(X.Y) =€, (XY)e(0L)X (0L NOLY)X(OLY),

are obtained at sucN;, N,, andK (also showh that the (96)
corresponding evaluatebased on the exponential conver-
gence error becomes-1% (or less. For higher gaps, the e1(X,y)=€3—€,#0, (x,y)e(0OL)X(0LY), (97

numberN; of bands retained in the equati¢rd) should be
increasingly higher for the same relative precision fqr, where the dimensions of a primitive cdbhown with the
but the numbeiN, of bands retained in the equati¢@7) ~ bold dashed rectangle in Fig) are
increases relatively legsvhile N, is much greater thaN;). ok x vy
For the same relative precision fof, the partition number Li=Lit+lz, Ly=Lit+ls. (98)
K for the discrete integration ovéiin the equation$74) and
(77) should be larger wheny is close to one edgfirst v4 in
the first gap or to both edgesyy in the second gagpof the
gap.

(b) Comparison with the analytical solutioin [14], we
obtained the analytical solution using the propagation matrix
method. The spectrurmy; of the perturbed operatdd con- wheren; = \/;, is the refractive index of a dielectric material.

sists of the continuous part coinciding with the spectrum In this paper, we do the computations for the case of a
{mg} of the unperturbed operatdf, and of the discrete set square geometry primitive cell,

of defect eigenvaluegmgy} located in the gaps ofmg}
[where| n(v)|>1, see Eq(84)] which is given by the fol- X =LY, (100
lowing equation for the defect frequeney [see Eq(82)]: ‘ ’

We will represent the spectrui25) of the Maxwellian op-
erator(26) in terms of the dimensionless frequeneysimi-
larly to Eq. (82)],

v=L1Jeym=n;L w/c, (99

5 taking the following values for the relative thickness of the
x(vg)=sgn(n(ve))Nn(ve)=—1, (93)  wall of the grid[see Eq(A25)] and for the dielectric contrast
between the wall and the rddee Eq.(96)]:
where
_ _ A=L,/L;=0.1, ny/n;=4 (nj=\¢). (101
x(v)=tanvv)[q;sin(v)cogrv)+g,cog v)sin(rv)],

(94) 1. Computation of the spectral system for the periodic medium

v=0ay(1+A), qi:(UiJrUifl)/z’ oi=ns/n;, We compyte the spectra] sy;te{@) for thg periodic op-
eratorM, using the expansion in eigenfunctions of the aux-
n= \/;. (95) iliary operatorM, as described in Sec. A 3. We test the con-

vergence of these computations with respect to the increase

We have showii14] that there is at least one defect eigen-of the numberN; of eigenfunctions oM retained in the
value in each gap and one more for each peifj= mn/v representatioriA38) of the eigenvalue problem for the peri-
(m=1,2,3...) appearing in the gap. We can find all defect odic medium. For the eigenvalueg(n,k) in eachnth band
eigenvalues in any gap by solving the equati®8) numeri-  of the spectrum oM,, we monitor an averagéover k, ,
cally. Results of computationgwith the precision of [—, ] with a uniform partition with a numbeK) rela-
~10 %) of the defect spectral values in the first threetive difference between consecutive iterationshig with a
gaps(in terms of the frequency variable) are shown in fixed step and observe a close to exponential convergence.
Table | forL,/L;=0.5,n,/n;=2.5, andny/n;=3.5. Com-  The minimal valueN; that provides an average precisi@m
paring the results of computations of; by the resolvent evaluated average relative efrof 1% or less for eigenval-
method with the “exadtresults of the propagation matrix ues in each of the firsN, bands ofM, (needed for the
method, we find that the difference between them is at mosapplication of the resolvent method, see Sec. Jlifound
two times greater than the total evaluatbadsed on the ex- to be approximately proportional td, with a coefficient less
ponential convergengerror A=Ax+A;+A,) for vy. than 10(with any tested partition numbét from 4 to 10:
B. Rectangular geometry two-dimensional system Ng~7N,, 10<N,=<100. (102
We consider a simple periodic medium of the tyi@)—  We find a wide gap between the first and the second spectral
(14) consisting(see Fig. ] of a rectangular lattice formed by bands ofM,. Computing the gap edges at increasing values
rectangular rods with dimensiohg andL} of one dielectric,  of the truncation numbeX; and the partition numbeg, we
spaced by 3 andL, respectively, and of the grid of another observe a close to exponential convergence. An evaluated
dielectric filling the space between the rods. One rod is therror with respect tdN; is ~0.1% for the lower edge and
replaced with a third dielectric forming a defect. For such a~1% for the upper edge of the gap =10, which is
medium, the dielectric functio(d2)—(14) can be specified as consistent with Eq(102. Results of computations of the
follows: edges of the gap at increasing values of the nuntbéor
uniform partition at N3=40 (providing the precision of
go(Xy)=€1, (XYy)e(0L])*X(0LY), ~0.1% or less with respect td3) are shown in Table II.
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TABLE II. Results of computations of edges, v, (in terms of
the dimensionless frequeney= wn; L, /c) for the first spectral gap
for a 2D photonic crystal withL,/L;=0.5 andn,/n;=2.5 (n
=) at various values of the partition numb€mwith the trunca-
tion numbeN;=40; dv, , is the difference between values af,
for the current and the next iteratiody, ,, is an evaluated relative

error corresponding to the current valuekaf

K v, dy,10% 6v,% v, dp,,10°% 61, %
4 1744 —126 —-12 2.828 89 54
6 1.870 —49 —45 2739 33 2.0
8 1.919 —23 —2.0 2.706 16 1.0
10 1.942 2.690
2. Computation of the perturbation matrix
The perturbation matrix M4(n,k;n’,k")  (n,n’

PHYSICAL REVIEW E 64 056623

(1a,b) (2) (3a,b) (4a,b)

27

26 | e .
25

T
o
)

1

241 , RSN .

T

o]
65

1

2.3
22

21 | T

1.8 1 1 1 1 1
1 1.5 2 25 3 3.5

n3/n1

FIG. 2. Dimensionless frequencieg (v=wn;L,/c) for the

=1,2,...Ny) (73 which is needed for the application of first four branches of localized defect modekoublet (1a,b and
the resolvent methosee Eqs(77)—(79)] is computed based 4a,b, singlet(2), and quasidouble3a,h stateg at increasing val-
on the expansiofA43) for the eigenfunctions of the operator ues of the defect-medium dielectric contragtn; (n;=+e;) for a

Mg in terms of eigenfunctions of the auxiliary operaﬁh@

(see Sec. AB

’
N3

Yonk(XY)= 2 by (Migr(x,y), Nn=12,... Ny,
n=1

where the truncation numbét; is such[see Eq(102)] that
it provides necessary precisiqof ~1%) for the firstN,
bands ofM, (see Sec. IV B L Then, the perturbation matrix

represents as follows:

Ml(n,k;nl,k,)

N

Mz

N3
~~E )
n=1n'=1

n,n'=12,...Ny,

(103

b% (b (N)My(n,k;n’ k"),

(104

2D square lattice of square dielectric rods in a dielectric background
with a one-rod replacement defesee Fig. 1 atL,/L;=0.1 and
n2 /n1= 40

in Sec. llIC. We consideg;= €4, so the perturbation func-
tion y(x,y) is negative and, consequently, each eigenvalue
s(u) of the operatoiS(u) is a real and increasing function
of u (see end of Sec. lll A Because the width of the first
spectral band of the operatht, is of order of one in terms

of the frequency variable (see Table I, we take such value
for the shift constaning [see Eqs(52) and(53)] that corre-
sponds tov=1 [see Eq(99)]:

mg=1/e,(L})2. (106)

Four branches of the defect states are found for values of
nz/n, within the interval[1.0,3.5 (see Fig. 2
We test the convergence of computations of the defect

where we introduce the matrix of the perturbation operatofrequenciesyy [see Eq(99)] with respect to the increase of
M1 with respect to the basis system of eigenfunctions of thehe truncation numbend, [for the bands used in the eigen-

auxiliary operatotivl,

Ml(ﬁ,kiﬁ',k')=(l~//oﬁ,k,M1~l//071',k')

X y .
= fOleXfoleyY(X,y)a—Ex,y (&alﬂoﬁ’k(xyy))

X (9 gnr 0 (X%,Y))

lytically [see Eq.(A30)].

3. Computation of the defect states

Introducing a one-rod defect as in E§7) with a dielec-
tric constantes, we look for defect satesy in the first gap at

(109
[see Eqs(33), (34), and(97)], which can be computed ana-

value equatiori74) for the operatoS] andN,, [for the bands
used in the equatiofi77) for the perturbation operatoi/ |

and of the partition numbeK [using the midpoint rule for
the discrete integration ik, in Eqgs.(74) and(77)]. Results

of such computations for the defect frequengyof the sec-

ond branch ah;/n;=2.5 are presented in Table IIl, showing

a close to exponential convergence with respect to each of
the numberdN,, N,, andK.

We compute the defect frequencies at increasing values of
the contrasing/n;. For each defect state at each value of
ns/nq, we increaséN,, N,, andK until an evaluatedbased
on the exponential hypothegisrror for the defect frequency
becomes 1% or less. For each iteration, we take the value of
the truncation numbeN; [for the bands of the auxiliary

operatorM, used in the equatiofA38) for the spectrum of

increasing values of the defect-medium dielectric contrasthe operatoiM] to be at leasN; (102 providing the preci-
ns/n; (n;=/¢;), applying the resolvent method as describedsion of 1% for the firsiN, bands ofM .
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TABLE Ill. Results of computations of the dimensionless fre-  TABLE V. Values of the partition numbeK that provide the
quencyr, (v=wn;L4/c) in the second defect state branch for a precision(the corresponding evaluated relative errég~1% (or
2D photonic crystal abz/n;=2.5 (n;= ;) at increasing values of les9 for some values of the dimensionless frequencigs (v
one of the truncation numbehs; andN,, or of the partition number =wn;L;/c) of the defect states at certain values raf/n; (n;
K while the other two are fixefand the numbeN;=350, see Eq. = V&) in each of the first three branches in the first gap, .87
(102)]; dv, is the difference between values of for the current  <2.74, for a 2D photonic crystali itself is also shown. Compu-
and the next iterationjv, is an evaluated relative error correspond- tations are performed at such values of the truncation nuniers

ing to the current value of the numbeN{, or N,, or K) being

andN, that provide corresponding precisi@j ,~ 1% (or less.

iterated.
ns/ny vy K 6¢,% nsg/ng vy K 6, %
N, N, K vy dv,,10°3 vy, %
1.2 2.64 6 0.65 1.8 265 4 0.63
20 40 4 2.2865 2.7 0.14 1.5 2.41 6 0.11 2.5 231 4 0.10
6 2.2838 0.5 0.03 3.0 1.92 6 —-24 3.5 203 4 0.12
8 2.2833 0.1
10 22832 nz/ng vza K 6,% nz/ng Vap K 6,%
20 20 6 23343 44 1.3 2.7 2.59 6 —0.25 2.7 2.63 6 0.75
30 22907 70 0.48 3.5 229 6 —0.39 3.5 232 6 0.15
40 2.2838 2.6 0.15
50 2.2811 The values ofK that provide the precisioiithe corre-
10 40 6 2.2082 15 0.85 sponding evaluated erfoby~1%, as well asj itself, are
20 22837 6.4 031 shown in Table V for some defect frequencies in each of the
30 22773 1.0 first three defect branches in the first gap. For the same
40 22763 branch, the error at the same valuekofis higher for fre-

guencies that are closer to the gap edge.

Results of computations of the defect frequencies at in-

The values ofN; and N, that provide the precisiofthe creasing vglues of the defect-medium dielectric contrast
corresponding evaluated erjaf; ,~ 1% are shown in Table n.3/n1 (starting frqm the value 1.0 for the un_perturbed me-
IV for some of the defect frequencies. We find that compu-dium) are shown in Fig. 2. We find that the first defect fre-
tations of the defect states at higher values of the defecdUency arises at the upper edge of the gap immediately, as
medium dielectric contrasts/n, require higher numbens, ~ S0ON asnz>n,, while the second defect frequency arises at
andN, for the same precision. This can be related to highePs/N1~1.5. When the defect-medium dielectric contrast
spatial oscillations of a defect eigenfunction localized in theNs/Ny increases, the defect frequencies decrease, to finally
vicinity of the defect with higher dielectric constamt, ~ Vanish at the lower edge of the gape estimate that the
(which can be roughly thought of as eigenfunctions of anfirst defect state should vanish/n,~3.5). Such behav-
operatoreglA in the defect region: sg&0]) so an expansion 107 1S consistent with the general analy$23,24] based on

of this function in Bloch waves should involve higher bandsthe Properties of the operat&(x). .
of the periodic operato . We have to note certain multiplicity of the defect eigen-

frequency in each of the four investigated branches and its
relation to certain symmetry of the corresponding eigenfunc-
provide the corresponding precisidh ,~1% (or less for the di- ~ 1ons. For a rectangular geometry periodic medium with a
mensionless frequencies, (v=wn,L,/c) of the defect states in 'ectangular defect that is concentric with a symmetric primi-
the first gap, 1.8% v<2.74 at some values of the defect-medium tive cell (see Fig. 1, both the unperturbed operatht, and
dielectric contrashs/n; (n;= ;) for a 2D photonic crystal. Com- the perturbed operatdd have an orthogonal symmetry: they
putations of the defect frequencieg are performed at those values are invariant with respect to the reflection about each of the
N, andN, and at the partition numbé¢=6. Corresponding evalu- two mid-lines,

ated errorsd;, &,, anddyx are also shown.

TABLE IV. Values of the truncation numbefs; and N, that

(X=Xg)(Xo=X) or (y—=Yo)<(Yo—y), (107
ns/ng vy branch N;  6;,% N, &,% 6, %
where §g,Y,) is the center of the defect. For the particular
15 241 L, 5 038 10 015 011 (55 of the square geomety00) for which we did the com-
25 200 1, 10 047 30 089 014 Putations, thereis an additional symmetry with respect to the
231 2 10 085 30 048 o002 diagonalreflection,
35 2.02 2 20 11 50 053 0.03 (X—Xo)—(Y—VYo)- (108
2.29 3, 30 1.0 60 0.61 —-0.39
2.32 3 30 064 60 1.2 0.15 Invariance of an operator with respect to both types of re-
254 4, 30 095 50 0.49 0.37 flection, (107) and (108), constitutes a tetragonal symmetry.

Such a symmetry of an operator allows two situations con-
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cerning the multiplicity of its eigenvalues and the related togreater than an evaluatédased on the exponential hypoth-
it symmetry of the corresponding eigenfunctioisee, e.g., esi9 error of ~0.1%.
[31]). One case is a singlet state where an eigenvalue is of We apply the method to a 2D square lattice of square
multiplicity 1 and the corresponding eigenfunction has a te-dielectric rods in a dielectric background with a one-rod re-
tragonal symmetry. The other case is a doublet state wheggacement defect and, again, observe a close to exponential
an eigenvalue is of multiplicity 2 and two corresponding convergence of computations of the defect frequencies with
basis eigenfunctions can be chosen to have éatcmosj an  respect to the partition numb&rand to the truncation num-
orthogonal symmetry while the pair being symmetric withbersN; and N,. Computing defect frequencies in the first
respect to the diagonal reflection. gap with controlled evaluated precision 6f1% at increas-
Results of our computations are consistent with the gening values of the defect-medium dielectric contrast, we ob-
eral symmetry analysis. The first, lowest branch of the defecserve four branches of defect modes of various symmetries
states is a doublet: we find a pair of basis eigenfunctidas rising at the top of the gap an@ventually vanishing at its
and 1b with the samdup to 14 digit$ corresponding eigen- bottom. An evaluatedbased on the exponential conver-
frequencyv,, both having orthogonal symmet(gf opposite  gence precision of~1% for frequencies near the middle of
signg. The second branch is a singlet: we see one eigenfun@ gap is reached witK =6 andN;=5 andN,= 10 for the
tion having a tetragonal symmetry, which corresponds to dirst (double} branch,N;=10 andN,=30 for the second
solitary eigenfrequency,. We identify as a third branch a (single) branch, andN;=30 and N,=60 for the third
pair of singlet state$3a and 3p where both eigenfunctions (quasidoubletbranch(see Table | and Fig.)2Such compu-
have a tetragonal symmetfgf opposite signs with respect to tations take from~ 0.3 min (for the first branchto ~1 min
the diagonal reflectiofl08)] while the corresponding eigen- (for the second brangho ~ 10 min (for the third branchof
frequencies ¢3, and v3y) differ by only about 2%; such a real time on four processors of a parallel computer SGI Ori-
pair of states can be called quasidoublsée [31]) and  gin2000.
thought of as a result of splitting of a doublet state of a The data concerning the configuration of the primitive cell
hypothetical operator with an octagon&ighen symmetry  of the periodic medium and of the defect enter these resol-
caused by the actual operatdr having a tetragonalower)  vent method computations in the form of the unperturbed
symmetry. The fourth branch is a doubldia and 4bwith  frequency spectrum and the matrix of perturbation of the
an eigenfrequency, (similarly to the first ong Maxwellian operator with respect to the basis of Bloch
eigenfunctions. These data are obtained based on the prelimi-
nary solution of the spectral problem for the periodic me-
V. CONCLUSIONS dium. Using the basis of analytically known eigenfunctions
We have developed a version of the resolvent method th&tf an auxiliary periodic operator for the case of relatively
guarantees a stable convergence of the iterative computatiof§all spacing between the rods of the 2D latties de-
of localized defect modes of H polarization in 2D photonic Scribed in Sec. AB the subsystem of Bloch eigenfunctions
crystals and allows us to control the computational precision(@nd of the corresponding eigenvalueta size sufficient for
It is based on an equiva|ent representation of the Spectré]btaining the above results for the defect states can be com-
problem in terms of the shift-inverse of the Maxwellian op- puted with the precision of 1% within a few minutes of the
erator. The defect states are obtained by solving the eige-PU time on an advanced desktop computer. Subsequent
value equation for an associated compact operator with theomputationgas described in Sec. IV B 2f the correspond-
expansion in Bloch eigenfunctions of the unperturbed Maxing perturbation matrix for a symmetric defect tak€0 min
wellian operator. This method can be also extended to 3@f real time on eight processors of Origin2000.
photonic crystals. In summary, the resolvent method developed and tested in
We have tested the method for a 1D two-layer periodicthis work allows high precision computations of the defect
medium with a one-layer defect and observed a close to exnodes of H polarization in 2D photonic crystals within rea-
ponential convergence of computations of the defect fresonable CPU time using widely available computer re-
quencies with respect to the numbéts and N, of bands sources. This method can be extended to 3D photonic crys-
retained in the expansion for the associated eigenvalue equis.
tion and for an auxiliary nonhomogeneous linear equation
for the perturbation of the Maxwellian operator, respectively, ACKNOWLEDGMENTS

and to the partition numbe for the discrete integration ik Effort of A. Figotin and V. Goren is sponsored by the Air
within each band. An evaluatehased on the exponential rorce Office of Scientific Research, Air Force Materials

convergenceprecision of~0.1% is reached witlk=8 and  command, USAF, under Grant No. F49620-99-1-0203.
N;=10 andN,=80 orN;=20 andN,= 100 for frequencies

near the middle of the first or of the third gap, respectively APPENDIX
(see Table)l The computations with such size arrays can be
performed within a few minutes of the CPU time on a desk-
top computer. Comparing results of these computations of a. Schralinger’s spectral problem
the defect frequencies in the first three gaps with the exact
(up to 10 1%4) results of the propagation matrianalytica)

method[14], we find that an actual error is at most two times S(N)=—(Ho—N)"TH,, (A1)

1. Compactness ofS operator for the resolvent method

Compactness of the correspondidgperator(see Sec.)|
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where

Ho=—alA+Uy(r), Hy;=Uq(r) (A2)

(a>0 is a constant with localized (square-integrab)e
U,(r), can be shown based on the exponential decdy'in
—r]| (and square-integrability at =r) of the Green's func-

tion G(F’,F) [the kernel of the integral representation of the

resolvent ¢{o,—\1) ~1]. Because of tha22],
Tr(sTS)=f dF’J dr|G(r’,n)|?|U(r)|?

<bf dr|U(r)|?<ee, (A3)

whereb>0 is a constanfi.e., Sis a Hilbert-Schmidt opera-
tor, see item(7) of list in Sec. AQ.

b. Maxwell’s spectral problem

We restrict our analysis to H-field formulation of the

spectral problem(For E-field formulation, a Schrdinger’s-

PHYSICAL REVIEW E 64 056623

W;=—(M+mg) M (Mg+mgl) 1 (A11)

is a perturbation of the shift inverse of the Maxwellian op-
erator.

The operatorW; is a compact(moreover, Hilbert-
Schmid) operatol 23,24,3Q. It is sufficient to prove this for
the case where the function

Y(r)=y(Neg(r) (A12)

is smooth.(Indeed[see[30] and items(4) and (5) of list in
Sec. A2 and Eqgs(A4)—(A6) of this papel, any function

y(F) can by represented as a sum of a non-negative function
and a nonpositive function, and any localized sign-definite

function y(r) can be circumscribed by such localized func-
tion yS(F) of the same sign that the corresponding function

ys(F) is smooth) Then, we can extract a term wit¥, from
M, [see Eqs(A4), (A6), and(A12)],
Mi=Y(NMo+(Vy(r)xe, (N)VX,  (A13)

and obtain

like representation of the direct resolvent approach is pos-
sible, see Sec.).The unperturbed and the perturbed Max- \y, = — (M +mgl) = 25(r)My(Mo+mgl) 2

wellian operators are
Mo=VXeg}(r)Vx (A4)
and
M=VXe Lr)Vx, (A5)

correspondingly, with a bounded positive functiog(?) or

s(F), and the perturbation operator is
M;=M—Mqy=V X y(r)V x (A6)

with a localized bounded functiop(r)=&~(r) — e, X(r).

We do the analysis in terms of a general 3D vector casé

but it also applies to 1Dd=1) or 2D (d=2) systems as in

Secs. Il A and II B where the spectral problem reduces to

scalar Maxwellian operatdisee Sec. || @

M=-V,. e YnVv,, (A7)
r=xe, V,=ed, for d=1, (A8)
r=xet+ye, V,=edst+ed, for d=2. (A9)

(i) Resolvent approach with the shift-inverd&hen the

—(M+mg) V()X eg H(r) VX (Mg+mgl) L.
(A14)

Both summands iW, are Hilbert-Schmidt operatofs30]
becausdsee itemg9) and (10) of list in Sec. AJ each of
them is a product of a Hilbert-Schmidt operator and a
bounded operator. The Hilbert-Schmidt factors are of the
form

Ci=—(M+mg)~Le(r) (A15)

with a localized bounded functiop(r)="(r) in the first
ummand ore(r)=(Vy(r))e, Y4r) in the second sum-
mand. Such an operat@; is a Hilbert-Schmidt operator,
imilarly to S operator for Schrdinger's problem[see Eq.
Al) with (A2)]; this can be shown based on the exponential
decay(and square integrabilityof the Green'’s function for
the resolvent M —\1) ! (see[24,32 for 3D vector case, or
[33] for 1D or 2D scalar cageThe remaining factor in the
first summand,

B;=My(My+mgl)~? (A16)

is obviously bounded becaugsee item(11) of list in Sec.

resolvent method is applied to the spectral problem in termé 2] the spectrum oM is non-negative. The remaining fac-

of the shift inverse of the Maxwellian operat¢see Sec.

[I1A), the correspondin@ operator can be expressed as fol-

lows [see Eq.(63)]:

S(p)=(p+m9)(Mo—pul) " *(Mo+mg)W, (A10)

tor in the second summand
By=eo YAr)VX(Mg+mgl) ! (A17)

is also bounded becaugsee itemg11) and (12) of list in
Sec. A3, accounting ¥ x)T=V x,

(with w in a gap of the spectrum of the unperturbed operator

M), wherem >0 is a constant anjdee Eqgs(67), (52), and

(56)]

BJBy=(Mo+mgl) " *Mg(Mo+mgl) "t=Mg(Mg+mgl) 2
(A18)
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is obviously bounded for non-negatié,.

Finally, operator S is compact (moreover, Hilbert-
Schmid) operatof see itemg10) and(11) of listin Sec. A2
being a product of a bounded operatog+mg) (Mg
+mgl)(Mo— )~ and a Hilbert-Schmidt operataW;.

(ii) Direct resolvent approachlf one tries to apply the

resolvent method directly to the Maxwellian operator, the

correspondings operator(see Sec.)lwould be

S(N)=—(Mg—X)"My, (A19)

which is not compact. To prove this, it is enough to consider

the case of a smooth functiop(r) (A12), where we can
extract the term wittM from M, [see Eq(A13)] and, rep-
resentingM o= (My—Al)+\I, obtain

ST (\)=—=M1(Mg=X1) "= =5l =A¥()(Mg—\1)

—(VY(N) X eg (VX (Mg—\1) "L, (A20)

The first summand i is an operator of multiplication by a
function and is not compact becausee item(3) of list in

PHYSICAL REVIEW E 64 056623

(1) Every compact operator is a normwise limit of a se-
quence of finite rank operators.

(2) For any compact operato€ its reduction to an
N-dimensional subspacgy converges normwise to the op-
erator itself alN— and £y becomes the entire space,

PyCPy—C as Py—l, (A24)
wherePy, is the projector onCy. (This follows from item 1
above, accounting that the propef#24) holds for any fi-
nite rank operator in place @).
(3) Spectrum of any compact operator is discrete with
finite multiplicity of each nonzero eigenvalue and with zero
being the only possible limit point of the spectrum.

(4) Linear combination of two compact operators is a
compact operator.

(5) An operator confined between zero and a compact
operator is also compact.

(6) An operator adjoint to a compact operator is also com-
pact.

(7) If Tr(CTC)P< with p=1, then the operato€ is
compact. In particular, ifp=2 then suchC is called a

Sec. AZ it has continuous spectrum. Therefore, the operatofyjipert-Schmidt operator.

S as a whole is not compacas stated i23,24)), because
(see items 4 and 6 of list in Sec. Afthe remainder of the
sum is a compact operator.
Indeed, the second summandSh
Co= AW (Mg—A1)~! (A21)
with a localized bounded functioE/(F), is similar to the
operatorC; (A15) (with an arbitrary\ in a gap ofMy in-

stead ofA = —m,) compactness of which is discussed in Sec.

Albi.
The third summand irs',

Ca=—go H(N(VUN)XVX(Mg—A) "%, (A22)

is also compactas stated ifi23]). Indeed see item(8) of list
in Sec. AZ, accounting that [(Vy(r))xVx]'
=~ VX (VH()X,

CICs=—(Mg—A) VX (VY(N)X g AN (Vy(r) XV

X(Mg—x1)~1 (A23)

(8) If the operatoIC'C is a Hilbert-Schmidt operator, then
the operatolC is compact(This follows from item 7 above
with p=4).

(9) An operatorB is bounded if By,By)<b(i, ) for
all 4 with some constantb>0 independent off.

(10) Product of a compact operator and a bounded opera-
tor is compact.

(11) A self-adjoint operator is bounded if its spectrum is
bounded.

(12) If the operatoB'B is bounded, then the opera®iis
also bounded.

3. Solution of the spectral problem for the rectangular
geometry 2D periodic medium

We solve the spectral probleit85) for a 2D periodic
medium of the typ&96), following the method developed in
[28,29. If the thicknesd 5 of each wall of the grid is much
smaller then the corresponding dimenslchof the rod,

AT=L§ILs<1, (A25)

then the Maxwellian operatdvl ; (32) with (96) is relatively

is a Hilbert-Schmidt operator as it is of the same typeclose[in the functional sensg0)] to the following auxiliary

as the operatoW, [see Eq(A11l) with (A6)] of perturbation
of the shift inverse of the Maxwellian operatfsee Sec.
Alb(i)], with a localized bounded tensor function

o 2(N (VH(r) X (Vy(r))x in place of the scalar function

y(F) (and with an arbitraryh in a gap ofM, instead of
A=-—my).

2. Compact and bounded operators in Hilbert space

We list here some statements of the general theory of

linear operatorgsee, e.9.[34,35), to which we refer in our
analysis of the resolvent method.

operatorM
Mo=— 2, da o (A26)
a=xy gg(r,)
where
eg(ra)=€1, Trae(0LY),
g0(ry)=€x, r,e(Li,L,). (A27)
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Therefore, the system of eigenfunctioﬁ%o(x,y)} of the Wheren enumerates all difoerent paira(,ny,) in the order of
operatoriM , ascend of the eigenvalueg(n,,n ;k), counting each mul-
tiple eigenvaludif any) the number of timegin a row) equal
M oo(X,Y) =Motho(X,Y), (A28) to its multiplicity [compare this to the general structi#s)
with (47)]. There may be some multiple eigenvalues due to
can be taken as a basis for the representation of the spectlsaime extra symmetry. For example, ifi ,=L), then
problem forM, allowing an efficient iterative numerical so-  (n n’;k k)=my(n’,n;k,k) [see Eq(A32)].

lution. _ S _ Because the operatoks, andM, are periodic inx andy
Because the operatdf, is periodic inx andy (with the  \ith the same period&, and L,, respectively, the sub-

same periodt andL, as the operatoi), all analysis of system(A34) of Bloch elgenfunctlons of the operatmo for
the Sec. IID concernlng the structure of the spectral system Dach fixedk can be used as such orthogonal bésie Eq.
alpplles.toM o- The operatoiM, is a direct sum of two one- (48)] for the representation of the eigenvalue equatié®
dimensional operatorsl (a=Xx,y), each of the same form ith (41) for the operatorM, in L%(Q) that the Bloch
as the operatoM, for the 1D periodic medium studied in poundary conditiong42) will be automatically satisfied for
Sec. IVA1[compare Eq(A26) with Eq. (A27) to EQ.(32)  thatk. Then, each eigenfunctiofio,(x,y) of M, represents

for d=1 with Eq. (80)]: with its Fourier coefficientgb,(n)},,
'Y @ @ 1 ” ~
= 2 MG, MG=—do———da.  (A29) Po(X,Y) = 2, bie(m) Pronk(X,Y), (A36)
a=xXy so(ra) n=1 ’

Due to this, the system of Bloch eigenfunctions of the operawhere[see Eq.(48)]

tor M, can be found as direct product of the systems of
Bloch eigenfunctions of the two operator summansse bi(n)=C5 (Yonl ¥o) o (A37)
Eqgs.(36) and(37)]:

and the equatiof40) represents with the following system of

Zpo (X,y)= H PE (1) (A30) algebraic equations for the coefficiedts(n)},:
n, ) L n aly

©

n=(ne,ny), Nn,=12,...9, kye[—-mm], 2 Mgn,n")b(n)=mo(k)b(n), n=12,...

8

n=1

(A31) (A38)
where the functionjg, (r,) is given by the formulas86)—
(89) with L7, in place ofL,, (andr, in place ofx). Each
corresponding eigenvalue is a sum of the eigenvalues asso-
ciated with the factorgsg, | (r,) [see Eq(82)]:

where the matrix,

Mo(n,n")=C5 *(Yonk . Mothon )0 (A39)

mo(n,k) = 2 (Vg (Ka)INIL$)?, (A32) =4 f dXJ (X y)
where the functiornvg,(k) is determined by the equati¢84) X E (ﬁa%n,k(X,Y))
with L{, in place ofL, , in Eq. (85). Orthonormality of the a=xy

basis syster ¢, (X)} in L?(R) for d=1 yields orthonor-

X (0 Pon k(X,¥)) (A40)
mality of the basis systef¥io, ((x,y)} in L2(R?) for d=2 Yo' (XY
[see(50)]: [see Eqs(48), (32), (45), (36), and(13)], can be computed
~ ~ ) analytically[see Eqs(A30) and (96)].
(on,k» Ponr k') = Onnr 6(K—K"). (A33) The system(A38) represents the eigenvalue problem for

. the matrix Mg (n,n") (n,n"=1,2,...¢) with an infinite
We t?an reenumerate thg subsyst(amo_) of Bloch eigen- discrete system of eigenvectds,(n’)}, and correspond-
functions of the operatoM, for each fixedk to have the jng eigenvaluesn,(k):

corresponding eigenvalu¢A32) in ascending order:

-~ - {bnk(n)}o _ me(n,k)}  (N=1,2,... ).
{donk.Mo(nK) | nyy=1,2,... ¢} " . (A41)

={vonk:Mo(N,K) [ N=1,2,... o} Because each of the two systems of eigenfunctip#ig, }n

(A34)  and {¥oni}n, is orthogonal and both have the same fixed
B B norm[see Eq.48)], the relation(A36) implies that the sys-
mo(n-+1k)=mg(n,k), (A35)  tem(A41) of eigenvectorgb,(n)}, is orthonormal:
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* the difference between iteration result®mpleted with zero

> bnr k(Mbyr  (N)= 641 . (A42)  components for smalleXs). Due to closenesgn the func-

et tional sense30)] of the operatordvl, and M, [under the
The infinite system of homogeneous equatidiAs8) is condition(A25)], we can expect that reasonable precision for
solved iteratively. Truncating the summation inwith a  the eigenvalues and eigenvectors can be reached with a mod-
numberNs, we obtain the eigenvalue problem for the finite €rate truncation numbeét; (for example,N3~10N,). Then,
matrix {Mgc(n,n")} (n,n’=1,2, ... Ny) and solve it using the corresponding approximation for each eigenfunction of
a specialized standard library routine, obtaining the systerf€ operator Mg rep_resented with ~an eigenvector
of N5 eigenvectors with corresponding eigenvalues. We in{Pn.k(N")}n' can be obtained by summati¢A36) truncated
creaseN; (starting withNz=N,) until reaching necessary With the same numbei;:

precision for the system of the firbl, eigenvalues and cor- N3

responding eigenvectors, which is needed for the application X V)~ be (N ) Dmr (X n=12

of the resolvent methotsee Sec. Il ¢ the precision for a Yonx(x.¥) ,21 k() Yon (X.Y), 20 Na
vector{b, (n")}, can be evaluated based on the norm of (A43)
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