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Resolvent method for computations of localized defect modes of H-polarization
in two-dimensional photonic crystals

Alexander Figotin and Vladimir Goren
Department of Mathematics, University of California, Irvine, California 92697

~Received 29 January 2001; published 30 October 2001!

We have developed and tested a version of the resolvent~or Green’s function! method, based on the
shift-inverse of the Maxwellian operator, that ensures stable convergence of iterative computations of localized
defect modes of H-polarization in two-dimensional~2D! photonic crystals. The defect states are obtained by
solving the eigenvalue problem for an associated compact operator with the expansion in Bloch eigenfunctions
of the unperturbed Maxwellian operator. This method can be extended to 3D photonic crystals. We apply the
method to a 2D square lattice of square dielectric rods in a dielectric background and compute~with controlled
precision of;1%) the defect modes induced by the replacement of one rod~the defect!. We investigate the
rise and variation of the defect frequencies in a photonic band gap, caused by the increase of the dielectric
strength of the defect, for four branches of localized modes of various symmetries.
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I. INTRODUCTION

Photonic crystals~periodic dielectric structures! exhibit-
ing gaps in the frequency spectrum of electromagnetic wa
have attracted significant attention in recent years@1–5#. A
problem of localized waves with frequencies arising in t
gaps due to an isolated defect in a photonic crystal is
special importance@6,7#. Such modes, called defect mode
were observed experimentally for microwaves for a thr
dimensional~3D! system@8#, for 2D systems@9–11#, and for
a 1D system@9#.

Photonic crystals with defects can be useful in a variety
devices such as resonators, filters, switches, waveguides
more@2,4,5#. These applications require thorough theoreti
analysis of conditions for the rise of a localized mode in
gap and of the dependence of its frequency and of the lo
ization rate on the parameters of the photonic crystal.

Two-dimensional photonic crystals are of special inter
@9#. Such structures are much easier to fabricate than
structures while they still allow many important application
Theoretical analysis for 2D photonic crystals is significan
simpler than for 3D structures because a 2D dielectric sys
has two fundamental types of modes, E polarized and
polarized@12#, for each of which the problem reduces to
one-component wave equation for E field or H field, resp
tively.

Analytical and numerical computations of the spect
system of a periodic dielectric structure with defects is
challenging problem. Analytical methods have been dev
oped for 1D structures. The simplest configuration of suc
layered system with a defect was studied using transfer
trix method@9,13#, and a general configuration of a layere
system was considered using propagation matrix met
@14#. No analytical solution is known for 2D or 3D photon
crystals.

There have been three major approaches to nume
computations of the defect modes in photonic crystals:
supercell method, the time-domain integration, and the re
vent ~or Green’s function! method. The supercell metho
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considers a finite region of a photonic crystal with a defect
a cell in a periodic superstructure. Combined with the pla
wave expansion, it has been applied to 3D@8,15# and 2D
@16# systems, and the narrow frequency bands induced
defects have been obtained. The time-domain integra
methods have been applied to simulate the excitation
E-polarized defect modes in 2D photonic crystals, using
merical solution of Maxwell’s equations in a finite regio
with either periodic@17–19# or absorbing@20,21# boundary
conditions.

The resolvent method~often called the Green’s function
method when used in the coordinate representation! gives an
exact mathematical treatment of the defect modes in an
nite medium with a localized perturbation. It was first dev
oped for electron systems described by Schro¨dinger’s equa-
tion ~see, for instance,@22#!. In general, the spectral problem

Ac5lc ~1!

is considered for a perturbed operator

A5A01A1 , ~2!

where the spectral system for the unperturbed operatorA0 is
known. The resolvent approach to finding the modesc with
l in the gaps of the spectrum ofA0 ~the defect states! is to
recast the equation~1! with ~2! as follows:

S~l!c5c, ~3!

S~l!52~A02lI !21A1 , ~4!

where the first factor inS(l) is called the resolvent operato
for A0.

Numerical solution of the equation~3! for l andc, where
the spaceL of functionsc(rW) is infinite dimensional, can be
obtained using reduction of operatorS to anN-dimensional
subspaceLN of L and then increasingN to reach necessar
precision forl andc. ~For example, this can be done usin
a discrete basis inL with increasing numberN of functions
retained for the matrix representation ofS.! Convergence of
©2001 The American Physical Society23-1
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such an iteration procedure is guaranteed only ifS is a com-
pact operator, that is, such operator~see items 1 and 2 of lis
in Sec. A 2! that its reduction to anN-dimensional subspac
LN converges normwise to the operator itself asN→` and
LN becomes the entire spaceL.

For electrons in a crystal with a localized defect, Schro¨d-
inger’s equation represents the spectral problem for a
turbed Hamiltonian operator,H5H01H1, where the unper-
turbed part includes differentiation of the second order,H0

52a D1U0(rW), wherea is a constant, and the perturbatio
part is an operator of multiplication by a localized functio
H15U1(rW). In this case~see Sec. A 1 a!, the corresponding
operatorS ~4! is compact.

For the electromagnetic field in a dielectric medium, t
spectral problem for time-harmonic modes can be conside
either with electric field EW (rW) for the operator ME

5«21(rW)¹W 3¹W 3 or with magnetic fieldHW (rW) for the opera-
tor MH5¹W 3«21(rW)¹W 3, with an additional divergence fre
condition ¹W •«(rW)EW (rW)50 or ¹W •HW (rW)50, respectively. In
either formulation, the perturbation operatorM15M2M0,
corresponding to a localized perturbation~defect! «1(rW)
5«(rW)2«0(rW) of the dielectric function, is also a secon
order differential operator,M1

E5g(rW)¹W 3¹W 3 or M1
H

5¹W 3g(rW)¹W 3, where

g~rW !5«21~rW !2«0
21~rW !52«1~rW !/«0~rW !«~rW !,

which balances the operatorM0 in the resolvent factor@see
Eq. ~4!#. Because of that@see Sec. A 1 b~ii !#, the correspond-
ing operatorS is not compact, and the convergence of n
merical computations based on a straightforward applica
of the resolvent method to the operatorM is not guaranteed
@23,24#.

Nevertheless, for E-field formulation, the perturbati
term in the spectral equation can be represented as a res
multiplication by a localized function~like in Schrödinger’s
equation!,

M1
EEW 5g~rW !¹W 3¹W 3EW 5g~rW !«~rW !MEEW

52«1~rW !«0
21~rW !lEW ,

assumingEW (rW) is a solution of the spectral equationME EW

5lEW . Therefore, the spectral problem for defect states
be represented in a form of Eq.~3! with a modifiedS opera-
tor, S̃(l)5(M0

E2lI )21l«0
21(rW)«1(rW), which is compact.

Such resolvent approach~combined with the plane-wave ex
pansion for the unperturbed spectral system! has been suc
cessfully implemented for a 1D layered medium@9,13# and
for E-polarized modes in a 2D photonic crystal@25#, where
there is only one nonzero component ofE field and no de-
pendence on the corresponding coordinate so the diverge
free condition is satisfied automatically.

Similar resolvent approach with E-field formulation h
been attempted for computations of defect states
H-polarized modes in a 2D photonic crystal@26#. However,
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because there are two nonzero components of E field
pending on the same pair of coordinates, the divergence-
condition is not automatically satisfied. At the same time,
iteration procedure for numerical computations ofl andc,
based on the expansion in eigenfunctions of the unpertur
operator M0

E5«0
21(rW)¹W 3¹W 3, with increasing number of

the eigenfunctions retained, converges to functions satisfy
the condition ¹W •«0(rW)EW (rW)50 instead of the exac
divergence-free condition¹W •«(rW)EW (rW)50. The resolvent
approach with E-field formulation to a 3D photonic cryst
will face the same difficulty.

In this paper, we develop such version of the resolv
method with H-field formulation~see Sec. III A! that the cor-
responding operatorS is compact. The approach is based
an equivalent representation of the spectral problem~1! for
MH in terms of the shift-inverse operator (MH1msI )

21

@23,24#. We first implement this method for a 1D system~as
a test! and then for H-polarized modes in a 2D photon
crystal, with the divergence-free condition being satisfied
tomatically~for H-field formulation!. We observe stable con
vergence of the iteration procedure for computations of
defect states. The same version of the resolvent method
H-field formulation can be applied to a 3D photonic crys
~see Sec. A 1 b!, where the divergence-free condition can
satisfied by using the expansion in eigenfunctions of the
perturbed periodic operatorM0

H @27#.

II. BASIC EQUATIONS

The description of the dynamics of the electromagne
field in a lossless dielectric medium can be reduced to
wave equation for the magnetic field HW (rW,t),

c22] t
2HW 52¹W 3

1

«~rW !
¹W 3HW , ~5!

wherec is the speed of light in vacuum and

«~rW !>0, ~6!

with an additional divergence-free condition

¹W •HW ~rW,t !50. ~7!

A. Two-dimensional system

We consider an infinite dielectric medium that is hom
geneous along one axis~chosen to be thez axis!, so the
dielectric function depends on the two transversal coo
nates only:

«5«~x,y!. ~8!

For such a 2D medium, we consider here only such soluti
of the vector wave equation~5! that depend on the two trans
versal coordinates only,

HW 5HW ~x,y;t !, ~9!
3-2
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representing electromagnetic waves propagating~or local-
ized! in the x,y plane. There are two fundamental types
such solutions: H-polarized modes and E-polarized mo
@12#. In this paper, we study H-polarized~or TE! modes
where HW is parallel to thez axis,

Hx5Hy50. ~10!

For such solutions, the equation~5! reduces to the following
scalar 2D wave equation for thez component of HW :

c22] t
2Hz5S ]x

1

«~x,y!
]x1]y

1

«~x,y!
]yDHz , ~11!

where2`,x, y,`, and the condition~7! is satisfied iden-
tically.

We will consider a 2D periodic medium with a rectang
lar primitive cell and with a finite rectangular defect regio
In terms of the dielectric function«(x,y) this can be repre-
sented as follows~choosing the axes of the cell to be thex
axis and they axis!:

«~x,y!5«0~x,y!1«1~x,y!, ~12!

«0~x1Lx ,y!5«0~x,y1Ly!5«0~x,y!, ~13!

«1~x,y![” 0, ~x,y!P~ax ,bx!3~ay ,by!,

~bx2ax!,~by2ay!,`. ~14!

A simple configuration@Eqs.~96!,~97!# of such a medium is
shown in Fig. 1. In general, the resolvent method develo
in this paper can be applied to an arbitrary configuration o
2D periodic dielectric medium with a localized defect.

B. One-dimensional system

As a test system for our method, we consider an infin
dielectric medium where the dielectric function chang
along one axis only~chosen to be thex axis!,

FIG. 1. A fragment of the cross section of a rectangular geo
etry 2D photonic crystal with a defect. The bold dashed rectan
shows a primitive cell chosen for computations; a lighter das
rectangle shows a symmetric primitive cell.
05662
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«5«~x!. ~15!

For such a 1D medium, we consider here only such soluti
of the vector wave equation~5! that depend on thex coordi-
nate only,

HW 5HW ~x,t !, ~16!

and have a nonzero component along one transversal
only ~chosen to be thez axis for each such solution!,

Hx5Hy50, ~17!

representing linear polarized electromagnetic waves pro
gating~or localized! along thex axis. For such a solution, th
equation~5! reduces to the following scalar 1D wave equ
tion for thez component of HW :

c22] t
2Hz5]x

1

«~x!
]xHz , ~18!

where2`,x,`, and the condition~7! is satisfied identi-
cally.

We will study a periodic 1D medium of a periodL with a
defect of finite thickness. In terms of the dielectric functio
«(x) this can be represented as follows:

«~x!5«0~x!1«1~x!, ~19!

«0~x1L !5«0~x!, ~20!

«1~x![” 0, xP~a,b!, b2a,`. ~21!

C. Time-harmonic modes

We consider time-harmonic fields,

Hz~r ;t !5c~r !exp~2 ivt !1c.c., ~22!

r5~x,y! for d52, r5~x! for d51, ~23!

for which the wave equation~11! or ~18! reduces to the spec
tral problem for thed-dimensional scalar Maxwellian opera
tor M (d denotes the number of dimensions for the syste!,

Mc~r !5mc~r ! ~24!

with

m5~v/c!2, ~25!

where

M52(
$a%

]a

1

«~r !
]a , ~26!

$a%5x,y for d52, $a%5x for d51, ~27!

is a non-negative self-adjoint operator in the spaceL2(Rd) of
functionsc(r ) (2`,r a,`) with the inner product

-
le
d

3-3
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~c1 ,c2!5E
Rd

c1* ~r !c2~r !)
$a%

dra , ~28!

r x5x, r y5y. ~29!

For a system of homogeneous regions where the diele
function «(r ) is piecewise constant, an operator of the fo
~26! can be understood in terms of the corresponding fu
tional: given a functionc2PL2(Rd), the operatorM defines
the inner product

~c1 ,Mc2!5E
Rd

c1* ~r !S 2(
$a%

]a

1

«~r !
]aDc2~r !)

$a%
dra

5E
Rd

1

«~r ! (
$a%

@]ac1* ~r !#@]ac2~r !#)
$a%

dra

~30!

with any functionc1PL2(Rd), provided the right-hand side
exists with those functionsc1(r ) andc2(r ).

According to the form~12!–~14! or ~19!–~21! of the di-
electric function, the Maxwellian operatorM can be repre-
sented as a sum,

M5M01M1 , ~31!

where

M052(
$a%

]a

1

«0~r !
]a ~32!

is a Maxwellian operator for an unperturbed periodic m
dium @see Eq.~20! or ~13!# and

M152(
$a%

]ag~r !]a ~33!

is the perturbation for the Maxwellian operator due to t
defect, with

g~r !5
1

«~r !
2

1

«0~r !
5

2«1~r !

«~r !«0~r !
[” 0

for rPD[)
$a%

~aa ,ba!. ~34!

D. Structure of the spectral system for the periodic medium

For further reference, we remind here some facts of
spectral theory of periodic self-adjoint operators~see, e.g.,
@22#! applying it to the Maxwellian operator~32!. The spec-
tral problem for the periodic medium@with periodsLa , see
Eq. ~13! or ~20!#,

M0c0~r !5m0c0~r !, ~35!

can be solved with piecewise differentiable continuous fu
tions c0(r ) that possess the Bloch property:

ck~r1Laea!5eikack~r !, ~36!
05662
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k5~kx ,ky! for d52, k5~kx! for d51 ~37!

(ea is a unit vector along ana axis!. Such functions can be
expressed in the form

ck~r !5eiq•ruk~r !, qa5ka /La , ~38!

uk~r1Laea!5uk~r !, ~39!

representing modulated waves of Hz(r ,t) @see Eq. ~22!#
propagating along thex,y plane ford52 or along thex axis
for d51.

The spectral problem~35! for the operatorM0 ~32! with
the condition~36! can be solved for eachk separately, being
reduced to one primitive cellQ,

M0c0k~r !5m0~k!c0k~r !, ~40!

rPQ[)
$a%

~0,La#, ~41!

wherec0k(r ) has to satisfy the Bloch boundary condition

c0k~r 81Laea!5eikac0k~r 8!,

]ac0k~r 81Laea!5eika]ac0k~r 8!,

r 85r a8ea8 , r a8P~0,La8#, a8Þa. ~42!

All values ofk yielding different solutions of the eigenvalu
problem~40!–~42! fill the Brillouin zone,

kPP[@2p,p#d. ~43!

According to Eqs.~28! and ~36!, any two Bloch functions
with different kPP are orthogonal,

~c1k ,c2k8!5~2p!dd~k2k8!~c1k ,c2k!Q , ~44!

where

~c1 ,c2!Q5E
Q

c1* ~r !c2~r !)
$a%

dra ~45!

is the inner product in the spaceL2(Q) of functionsc(r )
considered on one primitive cellQ.

For every fixedk, the solution of the eigenvalue problem
~40!–~42! forms a discrete system,

$c0n,k~r !,m0~n,k!% ~n51,2, . . . ,̀ !, ~46!

m0~n11,k!>m0~n,k!, ~47!

where n enumerates the eigenfunctionsc0n,k(r ) in the as-
cending order of the corresponding eigenvaluesm0(n,k),
counting each multiple eigenvalue~if any! the number of
times~in a row! equal to its multiplicity; there may be som
multiple eigenvalues for a 2D system due to some extra s
metry ~e.g.,L1,2

x 5L1,2
y ), while for a 1D system there are n

multiple eigenvalues~for the samek). The set~46! of func-
tions c0n,k with the samek forms an orthogonal basis fo
L2(Q),
3-4
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~c0n,k ,c0n8,k!Q5Cddn,n8 , ~48!

assuming that the set of linear independent eigenfunct
corresponding to the same multiple eigenvalue is chose
be orthogonal.

Consequently, the solution of the spectral problem~35!
for the periodic operatorM0 in L2(Rd) has the band structur

$c0n,k~r !,m0~n,k! u kPP[@2p,p#d% ~n51,2, . . . ,̀ !,
~49!

wheren enumerates the bands; for each fixedn, the value
m0(n,k) spans a spectral band whenk spans the Brillouin
zone.

The system~49! of Bloch eigenfunctionsc0n,k(r ) forms
an orthogonal basis inL2(Rd) @see Eqs.~44! and ~48!#,
which will be orthonormal,

~c0n,k ,c0n8,k8!5dn,n8d~k2k8!, ~50!

if we choose

Cd51/~2p!d. ~51!

For certain configurations of the periodic medium, there c
be gaps between the spectral bands. Existence of gaps i
spectrum was proven in@28,29# ~under certain conditions!
for a 2D periodic medium of a rectangular geometry~as in
Sec. IV B! and in @14# for a two-layer 1D periodic medium

III. THE RESOLVENT METHOD

We are interested in the defect states that are such s
tions of the spectral problem~24!–~26! for the perturbed
operatorM that the eigenvaluesm are located in the gaps o
the spectrum of the unperturbed operatorM0 ~32! and the
eigenfunctionsc(r ) are localized inr @24,30#.

A. Formulation for the shift-inverse of the Maxwellian
operator

To use the resolvent method for computations of the
fect states~see Sec. I!, we introduce the shift-inverse of th
Maxwellian operatorM ~as proposed in@23,24#!,

W5~M1msI !
21, ~52!

where the shift by a constant

ms.0 ~53!

is necessary because the spectrum of the non-negative o
tor M ~26! starts from zero; an optimal value ofms ~to be
specified later! would be of order of width of the first spec
tral band. AnS operator corresponding to the operatorW
will be compact while it would not be compact for the o
eratorM itself ~see Secs. I and A1 b!. The eigenvalue prob
lem for W,

Wc~r !5wc~r ! ~54!

with
05662
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w5~m1ms!
21, ~55!

is equivalent to the original spectral problem~24! in terms of
M .

We also introduce the shift-inverse for the unperturb
operatorM0,

W05~M01msI !
21, ~56!

and consider the perturbation of the operatorW,

W15W2W0 . ~57!

The spectral problem~54! with ~55! for the defect states
md ,cd in the gaps of the unperturbed spectrum,

mdP” Spectrum~M0!, ~58!

is equivalent to the following equation:

S~md!cd~r !5cd~r !, ~59!

where

S~m!52~W02wI !21W1 . ~60!

The resolvent factor inS(m) can be represented in terms
the operatorM0 and with an explicit dependence onm @see
Eqs.~56! and ~55!#:

~W02wI !2152~m1ms!~M02mI !21~M01msI !.
~61!

Solutionsmd ,cd of the equation~59! for the defect modes
can be effectively found in the following way: first, we solv
the eigenvalue problem

S~m!C~r ;m!5s~m!C~r ;m! ~62!

for the operatorS(m) with the parameterm taking an arbi-
trary value in a gap of the unperturbed spectrum,

S~m!5~m1ms!~M02mI !21~M01msI !W1 , ~63!

mP” Spectrum~M0!; ~64!

then, we find the defect spectral valuesmd from the equation

s~md!51; ~65!

finally, we obtain the defect modescd by substitutingmd for
m,

cd~r !5C~r ;md!. ~66!

The equation~57! for the perturbation of the shift-invers
operator can be represented in the following form@see Eqs.
~52!, ~56!, and~31!#:

W152WM 1W0 . ~67!

Hence, a matrix or integral representation for the opera
W1 can be effectively found by solving the following equ
tion @see Eqs.~52! and ~56!#:
3-5
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~M1msI !W152M1~M01msI !
21. ~68!

The operatorW1 ~67! is compact since it has two resolve
factors @see Eqs.~52! and ~56!#, with M ~26! or M0 ~32!,
versus one factorM1 ~33! with a localized functiong(r ) ~34!
@see@23,24# and Sec. A 1 b~i!#. Consequently, the operato
S(m) ~63! is also compact and its spectrum is purely discr
@see Sec. A 1 b~i! and item~3! of list in Sec. A 2#. Therefore,
the convergence of an iterative numerical solution~see Sec.
I! is guaranteed for both the equation~68! for W1 and the
equation~62! for the spectral system ofS(m).

If the operatorM1 ~33! is sign definite@the simplest real-
ization is where«1(r ) is sign definite, see Eq.~34!# then the
self-adjoint operatorW1 ~57! is also sign definite with an
opposite sign@due to Eqs.~52!, ~56!, and~31!#. Hence, each
eigenvalues(m) of the operatorS(m) ~63! is real and mono-
tone inm ~within a gap of the spectrum ofM0). This can be
shown by reducing the equation~62! to the eigenvalue prob
lem for a self-adjoint operator6(6W1)1/2S(m)(6W1)21/2

@see Eq.~63! and@23,24## that is monotone inm, increasing
for positiveW1 ~upper sign! or decreasing for negativeW1
~lower sign!. Therefore, the equation~65! will have at most
one solutionmd in each gap of the spectrum ofM0 for each
eigenvalues(m).

B. Bloch representation

It is convenient to take the system~49! of Bloch eigen-
functions of the operatorM0 as a basis for the representatio
of the equations~62! and~68!. An eigenfunctionC(r ;m) of
the operatorS(m) represents with its Fourier coefficien
$a(n,k;m)%,

C~r ;m!5 (
n51

` E
P
a~n,k;m!c0n,k~r !)

$a%
dka , ~69!

and the equation~62! yields the following system of integra
equations for the coefficients$a(n,k;m)%:

(
n851

` E
P
S~n,k;n8,k8;m!a~n8,k8;m!)

$a%
dka8

5s~m!a~n,k;m!,

n51,2, . . . ,̀ , kaP@2p,p#, ~70!

where

S~n,k;n8,k8;m!5„c0n,k ,S~m!c0n8,k8…

5~m1ms!„m0~n,k!2m…

21

3„m0~n,k!1ms…W1~n,k;n8,k8!

~71!

is the kernel matrix of the operatorS(m) ~63!.
The equation~68! yields the following system of integra

equations for the kernel matrixW1(n,k;n8,k8) of the pertur-
bationW1 of the shift-inverse operator:
05662
e

(
n851

` E
P
M1~n,k;n8,k8!W1~n8,k8;n9,k9!)

$a%
dka8

1„m0~n,k!1ms…W1~n,k;n9,k9!

52M1~n,k;n9,k9!„m0~n9,k9!1ms…
21,

n,n951,2, . . . ,̀ , ka ,ka9P@2p,p#, ~72!

where Eq.~31! is taken into account and

M1~n,k;n8,k8!5~c0n,k ,M1c0n8,k8!

5E
D

g~r !(
$a%

„]ac0n,k* ~r !…

3„]ac0n8,k8~r !…)
$a%

dra ~73!

is the kernel matrix of the perturbation operatorM1 @see Eqs.
~33!, ~34!, and~30!#.

We would like to emphasize that the application of t
resolvent method implies that the spectral system~49! for the
unperturbed periodic operatorM0 is found prior to the com-
putation of the defect states. Some useful information on
current sate of the photonic band structure computations
be found in@36# and in references therein.

C. Numerical analysis

Solving the system~70!, we find a functions(m) on a grid
of valuesm within a gap and then solve the equation~65! for
a defect spectral valuemd using an appropriate interpolation
We refine the grid to reach necessary precision formd .

The infinite system of homogeneous integral equatio
~70! is solved iteratively. We discretize the integration inka
over @2p,p#, using an appropriate quadrature rule with t
quadrature abscissas and weights$kj ,wj% ( j 51,2, . . . ,K)
corresponding to the partition numberK, and truncate the
summation inn with a numberN1. For fixedK and N1 we
obtain, at each fixed value ofm within a gap, the following
finite homogeneous system of linear algebraic equations
the unknown coefficients$a(n,kj ;m)%:

(
n851

N1

(
j8

S~n,kj ;n8,kj8 ;m!a~n8,kj8 ;m!)
$a%

wj
a8

5s~m!a~n,kj ;m! ~ j a851,2, . . . ,K !,

n51,2, . . . ,N1 , j a51,2, . . . ,K, ~74!

j5~ j x , j y!, kj5~kj x
,kj y

! for d52,

j5~ j x!, kj5~kj x
! for d51. ~75!

The system~74! forms the eigenvalue problem for the matr
S(n,kj ;n8,kj8 ;m))$a%wj

a8
~of a finite sizeN1Kd) with eigen-

vectors $a(n,kj ;m)%n,j and eigenvaluess(m). We solve it
using a specialized standard library routine.
3-6
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Because the operatorS(m) @the eigenvalue problem~62!
for it is represented by the system~70!# is compact, its spec
trum is discrete with zero being the only possible limit po
@see item~3! of list in Sec. A 2#, and any eigenvaluesq(m) of
the truncated discretized system~74! ~with fixed numberq,
where q enumerates the eigenvalues in descending or!
approaches certain limit with the increase ofK and N1, as
well as the corresponding eigenvector$aq(n,kj ;m)%n,j does
~completed with zero components for smallerN1 andK). We
increaseK andN1 until reaching necessary precision for a
eigenvalue of interest and for the corresponding eigenve
~the latter can be evaluated based on the norm of the di
ence between the iteration results!. Then, the correspondin
approximation for the eigenfunction of the operatorS(m)
associated with that eigenvalue can be obtained from
~69!:

Cq~r ;m!' (
n51

N1

(
j

aq~n,kj ;m!c0n,kj
~r !)

$a%
wj a

~ j a51,2, . . . ,K !. ~76!

To know the matrixS(n,kj ;n8,kj8 ;m) in the left-hand side
of the system~74!, we need to find@see Eq.~71!# a square
matrix W1(n,kj ;n8,kj8) (n,n851,2, . . . ,N1 , j a , j a8
51,2, . . . ,K) by solving the system~72! with necessary pre
cision.

The infinite system~72! of nonhomogeneous integra
equations of the second kind is solved iteratively. We d
cretize the integration inka , using the same quadrature ru
as for the system~70! with the same partition numberK, and
truncate the summation inn with a numberN2>N1, where
fixed N1 is the number of bands retained in the system~74!.
For fixedN2 andK we obtain the following finite nonhomo
geneous system of linear algebraic equations for the en
of a rectangular matrix W1(n8,kj8 ;n9,kj9) (n8
51,2, . . . ,N2 , n951,2, . . . ,N1 , j a8 , j a951,2, . . . ,K):

(
n851

N2

(
j8

A~n,kj ;n8,kj8!W1~n8,kj8 ;n9,kj9!

5B~n,kj ;n9,kj9! ~ j a851,2, . . . ,K !,

n51,2, . . . ,N2 , n951,2, . . . ,N1 , j a , j a951,2, . . . ,K,
~77!

with the following square matrix of coefficients:

A~n,kj ;n8,kj8!5M1~n,kj ;n8,kj8!)
$a%

wj
a8

1„m0~n,kj !1ms…dn,n8d j ,j8 , ~78!

and with the following rectangular matrix in the right-han
side:

B~n,kj ;n9,kj9!52M1~n,kj ;n9,kj9!„m0~n9,kj9!1ms…
21.
~79!
05662
t

r
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We solve the system~77! using a specialized standard libra
routine. Then, we obtain the square matr
W1(n8,kj8 ;n9,kj9) (n8,n951,2, . . . ,N1 , j a8 , j a9
51,2, . . . ,K) @needed in the equation~74!# just as the
square part~in n8) of the solution matrix of the system~77!.
Because the operatorW1 @an equation~68! for it is repre-
sented by the system~72!# is compact, the obtained squa
matrix with fixed N1 approaches certain limit with the in
crease ofN2 and K. We increaseN2 and K until reaching
necessary precision for the square matrixW1(n8,kj8 ;n9,kj9)
~that can be evaluated based on the norm of the differe
between the iteration results!.

Practically, we control the precision~with respect to itera-
tions in N1 , N2, and K) for the final result@based on the
solution of the system~74!#, which is a defect spectral valu
md @due to the equation~65! with the condition~58!# and a
vector $a(n,kj ;md)%n,j representing the correspondin
eigenfunctioncd(r ) @see Eqs.~66! and ~76!#; the precision
for a vector$a(n,kj ;md)%n,j can be evaluated based on th
norm of the difference between the iteration results~com-
pleted with zero components for smallerN1 andK).

The computation of the kernel-matrixM1(n,k;n8,k8)
~73! involves differentiation and integration inr a of oscillat-
ing functionsc0n,k(r ) ~the higher then, the faster the oscil-
lations!. To efficiently carry out the computations, we ne
the eigenfunctionsc0n,k(r ) of the unperturbed periodic op
eratorM0 to be found~with necessary precision! in the form
of superposition of a moderate number of analytically kno
functions.

IV. APPLICATION TO CERTAIN MEDIA

A. Layered one-dimensional system

As a test system for the resolvent method, we consider
simplest periodic medium of the type~19!–~21! with two
homogeneous layers~of thicknessL1 and L2) of different
dielectric materials in the period cell~of thicknessL5L1
1L2), where one cell is replaced with a homogeneous la
of a third dielectric material. For such a configuration, t
dielectric function~19!–~21! specifies as follows:

«0~x!5e1 , xP~0,L1!,

«0~x!5e2 , xP~L1 ,L !, ~80!

«1~x!5e32«0~x![” 0, xP~0,L !. ~81!

For such a system, we have obtained analytically the solu
for both the unperturbed and the perturbed eigenvalue p
lems using the propagation matrix method@14#. We find it
convenient to represent the spectrum~25! of the Maxwellian
operator~26! in terms of the dimensionless frequencyn, as
follows:

n5L1Ae1m5n1L1v/c, ~82!

whereni5Ae i is the refractive index of a dielectric materia
3-7
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TABLE I. Results of computations of the gap edges and the defect states~in terms of the dimensionles
frequencyn5vn1L1 /c) for the first three gaps for a 1D system atL2 /L150.5, n2 /n152.5, andn3 /n1

53.5 (ni5Ae i). ng is the gap number, (n l ,nu) is the gap interval,nd is the defect frequency~PMM and RM
stand for the propagation matrix method and for the resolvent method, respectively!. For the resolvent
method,K is a partition number for discrete integration ink, DK is the corresponding evaluated absolute er
for nd , N1 or N2 is the number of bands retained in Eq.~74! or Eq. ~77!, respectively,D1 or D2 is a
corresponding evaluated absolute error fornd .

ng n l andnu nd , PMM nd , RM K DK N1 D1 N2 D2

1 1.006 1.084 1.086 10 0.0003 10 0.0002 60 0.000
1.780 1.442 1.444 8 20.0004 10 0.0005 80 0.0009

2 2.667 2.807 2.813 12 0.0013 15 0.0008 80 0.002
2.929

3 3.842 3.976 3.980 8 20.0024 20 0.0014 100 0.0030
4.518 4.332 4.342 8 0.0015 20 0.0018 100 0.003
ng

o

s

ec.
-
lue
f
t

m

om-

-
e
e-
1. Analytical solution of the spectral problem for the periodic
medium

The spectrum$m0% of the unperturbed 1D operatorM0
~32! is given by the following equation for the correspondi
frequency variablen0 @see Eq.~82!#:

h~n0!5cos~k!, 2p<k<p, ~83!

where

h~n!5cos~n!cos~rn!2p sin~n!sin~rn!, ~84!

p5~r1r21!/2, r 5rL, r5n2 /n1 , L5L2 /L1 ,

ni5Ae i . ~85!

Using the phase-amplitude representation forh(n) @14#, we
have shown that the frequency spectrum has bands$n0n(k),
kP@2p,p#% (n51,2, . . . ) with a gap between each tw
consecutive bands. We can findn0n(k) for anyn solving the
equation~83! numerically.

The corresponding Bloch eigenfunctionsc0n,k(x) can be
easily found by solving the one-dimensional equation~40!
@see Eq.~32!# on a one-cell interval@0,L# with the Bloch
boundary conditions~42!,

c0n,k~x!5sn~k!c̆0n,k~ x̆!/AL1, x̆5x/L1 , L/L1511L,
~86!

c̆0n,k~ x̆!5@h2~n!cos~n x̆!1$eik2h1~n!%sin~n x̆!#,

0< x̆<1, ~87!

5@h2~n!cos~n!1$eik2h1~n!%sin~n!#

3cos@rn~ x̆21!#1r@2h2~n!sin~n!

1$eik2h1~n!%cos~n!#sin@rn~ x̆21!#,

1< x̆,11L, ~88!

h1~n!5cos~n!cos~rn!2r sin~n!sin~rn!,
05662
h2~n!5sin~n!cos~rn!2r cos~n!sin~rn!, ~89!

n5n0n~k!. ~90!

The constantsn(k) ~which can be taken as real-valued! is
determined by the condition~51! @see Eqs.~48! and ~45!#:

1

sn~k!2 52pE
0

11L

dx̆uc̆0n,k~ x̆!u2. ~91!

Results of computations of edges for the first three gaps~in
terms of the frequency variablen) are shown in Table I for
L2 /L150.5 andn2 /n152.5.

2. Computation of the defect states

(a) Resolvent approach. Introducing a one-cell defect a
in Eq. ~81!, we look for the defect statesmd in the first three
gaps, applying the resolvent method as described in S
III C. We considere3>max(e1,e2) so the perturbation func
tion g(x) is negative and, consequently, each eigenva
s(m) of the operatorS(m) is real and increasing function o
m ~see end of Sec. III A!. Because the width of the firs
spectral band of the operatorM0 is close to 1 in terms of the
frequency variablen ~see Table I!, we take such value for the
shift constantms @see Eqs.~52! and~53!# that corresponds to
n51 @see Eq.~82!#,

ms51/e1L1
2 . ~92!

We compute the perturbation matrixM1(n,k;n8,k8) ~73!
analytically, using the formulas~86!–~90! for the Bloch
functions c0n,k(x). The unperturbed frequency spectru
n0n(k) is computed by solving the equation~83! with ~84!
numerically~with relative precision of;10210%).

We observe a close to exponential convergence of c
putations of the defect frequenciesnd @see Eq.~82!# with
respect the increase of the numbersN1 andN2 of bands used
in the equations~74! and ~77!, respectively, and of the par
tition number K ~using the midpoint rule for the discret
integration ink). Results of computations of the defect fr
quenciesnd in the first three gaps atL2 /L150.5, n2 /n1
3-8
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52.5, andn3 /n153.5 are shown in Table I. These valuesnd
are obtained at suchN1 , N2, and K ~also shown! that the
corresponding evaluated~based on the exponential conve
gence! error becomes;1% ~or less!. For higher gaps, the
numberN1 of bands retained in the equation~74! should be
increasingly higher for the same relative precision fornd ,
but the numberN2 of bands retained in the equation~77!
increases relatively less~while N2 is much greater thanN1).
For the same relative precision fornd , the partition number
K for the discrete integration overk in the equations~74! and
~77! should be larger whennd is close to one edge~first nd in
the first gap! or to both edges (nd in the second gap! of the
gap.

(b) Comparison with the analytical solution. In @14#, we
obtained the analytical solution using the propagation ma
method. The spectrum$m% of the perturbed operatorM con-
sists of the continuous part coinciding with the spectr
$m0% of the unperturbed operatorM0 and of the discrete se
of defect eigenvalues$md% located in the gaps of$m0%
@where uh(n)u.1, see Eq.~84!# which is given by the fol-
lowing equation for the defect frequencynd @see Eq.~82!#:

x~nd!5sgn„h~nd!…Ah~nd!221, ~93!

where

x~n!5tan~vn!@q1sin~n!cos~rn!1q2cos~n!sin~rn!#,
~94!

v5s1~11L!, qi5~s i1s i
21!/2, s i5n3 /ni ,

ni5Ae i . ~95!

We have shown@14# that there is at least one defect eige
value in each gap and one more for each pointnm8 5mp/v
(m51,2,3, . . . ) appearing in the gap. We can find all defe
eigenvalues in any gap by solving the equation~93! numeri-
cally. Results of computations~with the precision of
;10210%) of the defect spectral values in the first thr
gaps ~in terms of the frequency variablen) are shown in
Table I for L2 /L150.5, n2 /n152.5, andn3 /n153.5. Com-
paring the results of computations ofnd by the resolvent
method with the ‘‘exact9 results of the propagation matri
method, we find that the difference between them is at m
two times greater than the total evaluated~based on the ex
ponential convergence! error (D5DK1D11D2) for nd .

B. Rectangular geometry two-dimensional system

We consider a simple periodic medium of the type~12!–
~14! consisting~see Fig. 1! of a rectangular lattice formed b
rectangular rods with dimensionsL1

x andL1
y of one dielectric,

spaced byL2
x andL2

y , respectively, and of the grid of anothe
dielectric filling the space between the rods. One rod is t
replaced with a third dielectric forming a defect. For such
medium, the dielectric function~12!–~14! can be specified a
follows:

«0~x,y!5e1 , ~x,y!P~0,L1
x!3~0,L1

y!,
05662
ix

-

t

st

n
a

«0~x,y!5e2 , ~x,y!P~0,Lx!3~0,Ly!\~0,L1
x!3~0,L1

y!,
~96!

«1~x,y!5e32e1[” 0, ~x,y!P~0,L1
x!3~0,L1

y!, ~97!

where the dimensions of a primitive cell~shown with the
bold dashed rectangle in Fig. 1! are

Lx5L1
x1L2

x , Ly5L1
y1L2

y . ~98!

We will represent the spectrum~25! of the Maxwellian op-
erator~26! in terms of the dimensionless frequencyn @simi-
larly to Eq. ~82!#,

n5L1
xAe1m5n1L1

xv/c, ~99!

whereni5Ae i is the refractive index of a dielectric materia
In this paper, we do the computations for the case o

square geometry primitive cell,

L1,2
x 5L1,2

y , ~100!

taking the following values for the relative thickness of t
wall of the grid@see Eq.~A25!# and for the dielectric contras
between the wall and the rod@see Eq.~96!#:

L5L2 /L150.1, n2 /n154 ~ni5Ae i !. ~101!

1. Computation of the spectral system for the periodic medium

We compute the spectral system~49! for the periodic op-
eratorM0 using the expansion in eigenfunctions of the au
iliary operatorM̃0 as described in Sec. A 3. We test the co
vergence of these computations with respect to the incre
of the numberN3 of eigenfunctions ofM̃0 retained in the
representation~A38! of the eigenvalue problem for the per
odic medium. For the eigenvaluesm0(n,k) in eachnth band
of the spectrum ofM0, we monitor an average~over kx,y
P@2p,p# with a uniform partition with a numberK) rela-
tive difference between consecutive iterations inN3 with a
fixed step and observe a close to exponential converge
The minimal valueN38 that provides an average precision~an
evaluated average relative error! of 1% or less for eigenval-
ues in each of the firstN2 bands ofM0 ~needed for the
application of the resolvent method, see Sec. III C! is found
to be approximately proportional toN2 with a coefficient less
than 10~with any tested partition numberK from 4 to 10!:

N38'7N2 , 10<N2<100. ~102!

We find a wide gap between the first and the second spe
bands ofM0. Computing the gap edges at increasing valu
of the truncation numberN3 and the partition numberK, we
observe a close to exponential convergence. An evalu
error with respect toN3 is ;0.1% for the lower edge and
;1% for the upper edge of the gap atN3510, which is
consistent with Eq.~102!. Results of computations of th
edges of the gap at increasing values of the numberK for
uniform partition at N3540 ~providing the precision of
;0.1% or less with respect toN3) are shown in Table II.
3-9
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2. Computation of the perturbation matrix

The perturbation matrix M1(n,k;n8,k8) (n,n8
51,2, . . . ,N2) ~73! which is needed for the application o
the resolvent method@see Eqs.~77!–~79!# is computed based
on the expansion~A43! for the eigenfunctions of the operato
M0 in terms of eigenfunctions of the auxiliary operatorM̃0
~see Sec. A 3!,

c0n,k~x,y!' (
ñ51

N38

bn,k~ ñ!c̃0ñ,k~x,y!, n51,2, . . . ,N2 ,

~103!

where the truncation numberN38 is such@see Eq.~102!# that
it provides necessary precision~of ;1%) for the firstN2
bands ofM0 ~see Sec. IV B 1!. Then, the perturbation matri
represents as follows:

M1~n,k;n8,k8!

' (
ñ51

N38

(
ñ851

N38

bn,k* ~ ñ!bn8,k8~ ñ8!M̃1~ ñ,k;ñ8,k8!,

n,n851,2, . . . ,N2 , ~104!

where we introduce the matrix of the perturbation opera
M1 with respect to the basis system of eigenfunctions of
auxiliary operatorM̃0,

M̃1~ ñ,k;ñ8,k8!5~ c̃0ñ,k ,M1c̃0ñ8,k8!

5E
0

L1
x

dxE
0

L1
y

dyg~x,y! (
a5x,y

„]ac̃0ñ,k
* ~x,y!…

3„]ac̃0ñ8,k8~x,y!… ~105!

@see Eqs.~33!, ~34!, and~97!#, which can be computed ana
lytically @see Eq.~A30!#.

3. Computation of the defect states

Introducing a one-rod defect as in Eq.~97! with a dielec-
tric constante3, we look for defect satesmd in the first gap at
increasing values of the defect-medium dielectric contr
n3 /n1 (ni5Ae i), applying the resolvent method as describ

TABLE II. Results of computations of edgesn l ,nu ~in terms of
the dimensionless frequencyn5vn1L1 /c) for the first spectral gap
for a 2D photonic crystal withL2 /L150.5 andn2 /n152.5 (ni

5Ae i) at various values of the partition numberK with the trunca-
tion numberN3540; dn l ,u is the difference between values ofn l ,u

for the current and the next iteration,dn l ,u is an evaluated relative
error corresponding to the current value ofK.

K n l dn l ,1023 dn l ,% nu dnu ,1023 dnu ,%

4 1.744 2126 212 2.828 89 5.4
6 1.870 249 24.5 2.739 33 2.0
8 1.919 223 22.0 2.706 16 1.0

10 1.942 2.690
05662
r
e

st
d

in Sec. III C. We considere3>e1, so the perturbation func
tion g(x,y) is negative and, consequently, each eigenva
s(m) of the operatorS(m) is a real and increasing functio
of m ~see end of Sec. III A!. Because the width of the firs
spectral band of the operatorM0 is of order of one in terms
of the frequency variablen ~see Table II!, we take such value
for the shift constantms @see Eqs.~52! and ~53!# that corre-
sponds ton51 @see Eq.~99!#:

ms51/e1~L1
x!2. ~106!

Four branches of the defect states are found for value
n3 /n1 within the interval@1.0,3.5# ~see Fig. 2!.

We test the convergence of computations of the de
frequenciesnd @see Eq.~99!# with respect to the increase o
the truncation numbersN1 @for the bands used in the eigen
value equation~74! for the operatorS# andN2 @for the bands
used in the equation~77! for the perturbation operatorW1#
and of the partition numberK @using the midpoint rule for
the discrete integration inka in Eqs.~74! and ~77!#. Results
of such computations for the defect frequencyn2 of the sec-
ond branch atn3 /n152.5 are presented in Table III, showin
a close to exponential convergence with respect to eac
the numbersN1 , N2, andK.

We compute the defect frequencies at increasing value
the contrastn3 /n1. For each defect state at each value
n3 /n1, we increaseN1 , N2, andK until an evaluated~based
on the exponential hypothesis! error for the defect frequency
becomes 1% or less. For each iteration, we take the valu
the truncation numberN3 @for the bands of the auxiliary
operatorM̃0 used in the equation~A38! for the spectrum of
the operatorM0# to be at leastN38 ~102! providing the preci-
sion of 1% for the firstN2 bands ofM0.

FIG. 2. Dimensionless frequenciesnd (n5vn1L1 /c) for the
first four branches of localized defect modes@doublet ~1a,b and
4a,b!, singlet~2!, and quasidoublet~3a,b! states# at increasing val-
ues of the defect-medium dielectric contrastn3 /n1 (ni5Ae i) for a
2D square lattice of square dielectric rods in a dielectric backgro
with a one-rod replacement defect~see Fig. 1! at L2 /L150.1 and
n2 /n154.0.
3-10
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The values ofN1 and N2 that provide the precision~the
corresponding evaluated error! d1,2;1% are shown in Table
IV for some of the defect frequencies. We find that comp
tations of the defect states at higher values of the def
medium dielectric contrastn3 /n1 require higher numbersN1
andN2 for the same precision. This can be related to hig
spatial oscillations of a defect eigenfunction localized in
vicinity of the defect with higher dielectric constante3
~which can be roughly thought of as eigenfunctions of
operatore3

21D in the defect region; see@30#! so an expansion
of this function in Bloch waves should involve higher ban
of the periodic operatorM0.

TABLE III. Results of computations of the dimensionless fr
quencyn2 (n5vn1L1 /c) in the second defect state branch for
2D photonic crystal atn3 /n152.5 (ni5Ae i) at increasing values o
one of the truncation numbersN1 andN2 or of the partition number
K while the other two are fixed@and the numberN385350, see Eq.
~102!#; dn2 is the difference between values ofn2 for the current
and the next iteration,dn2 is an evaluated relative error correspon
ing to the current value of the number (N1, or N2, or K) being
iterated.

N1 N2 K n2 dn2 ,1023 dn2 ,%

20 40 4 2.2865 2.7 0.14
6 2.2838 0.5 0.03
8 2.2833 0.1
10 2.2832

20 20 6 2.3343 44 1.3
30 2.2907 7.0 0.48
40 2.2838 2.6 0.15
50 2.2811

10 40 6 2.2982 15 0.85
20 2.2837 6.4 0.31
30 2.2773 1.0
40 2.2763

TABLE IV. Values of the truncation numbersN1 and N2 that
provide the corresponding precisiond1,2;1% ~or less! for the di-
mensionless frequenciesnd (n5vn1L1 /c) of the defect states in
the first gap, 1.87,n,2.74 at some values of the defect-mediu
dielectric contrastn3 /n1 (ni5Ae i) for a 2D photonic crystal. Com-
putations of the defect frequenciesnd are performed at those value
N1 andN2 and at the partition numberK56. Corresponding evalu
ated errorsd1 , d2, anddK are also shown.

n3 /n1 nd branch N1 d1 ,% N2 d2 ,% dK ,%

1.5 2.41 1a,b 5 0.38 10 0.15 0.11

2.5 2.00 1a,b 10 0.47 30 0.89 0.14
2.31 2 10 0.85 30 0.48 0.02

3.5 2.02 2 20 1.1 50 0.53 0.03
2.29 3a 30 1.0 60 0.61 20.39
2.32 3b 30 0.64 60 1.2 0.15
2.54 4a,b 30 0.95 50 0.49 0.37
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The values ofK that provide the precision~the corre-
sponding evaluated error! dK;1%, as well asdK itself, are
shown in Table V for some defect frequencies in each of
first three defect branches in the first gap. For the sa
branch, the error at the same value ofK is higher for fre-
quencies that are closer to the gap edge.

Results of computations of the defect frequencies at
creasing values of the defect-medium dielectric contr
n3 /n1 ~starting from the value 1.0 for the unperturbed m
dium! are shown in Fig. 2. We find that the first defect fr
quency arises at the upper edge of the gap immediately
soon asn3.n1, while the second defect frequency arises
n3/n1'1.5. When the defect-medium dielectric contra
n3 /n1 increases, the defect frequencies decrease, to fin
vanish at the lower edge of the gap.~We estimate that the
first defect state should vanish atn3 /n1'3.5). Such behav-
ior is consistent with the general analysis@23,24# based on
the properties of the operatorS(m).

We have to note certain multiplicity of the defect eige
frequency in each of the four investigated branches and
relation to certain symmetry of the corresponding eigenfu
tions. For a rectangular geometry periodic medium with
rectangular defect that is concentric with a symmetric prim
tive cell ~see Fig. 1!, both the unperturbed operatorM0 and
the perturbed operatorM have an orthogonal symmetry: the
are invariant with respect to the reflection about each of
two mid-lines,

~x2x0!↔~x02x! or ~y2y0!↔~y02y!, ~107!

where (x0 ,y0) is the center of the defect. For the particul
case of the square geometry~100! for which we did the com-
putations, there is an additional symmetry with respect to
diagonal reflection,

~x2x0!↔~y2y0!. ~108!

Invariance of an operator with respect to both types of
flection, ~107! and ~108!, constitutes a tetragonal symmetr
Such a symmetry of an operator allows two situations c

TABLE V. Values of the partition numberK that provide the
precision~the corresponding evaluated relative error! dK;1% ~or
less! for some values of the dimensionless frequenciesnd (n
5vn1L1 /c) of the defect states at certain values ofn3 /n1 (ni

5Ae i) in each of the first three branches in the first gap, 1.87,n
,2.74, for a 2D photonic crystal;dK itself is also shown. Compu-
tations are performed at such values of the truncation numbersN1

andN2 that provide corresponding precisiond1,2;1% ~or less!.

n3 /n1 n1 K dK ,% n3 /n1 n2 K dK ,%

1.2 2.64 6 0.65 1.8 2.65 4 0.63
1.5 2.41 6 0.11 2.5 2.31 4 0.10
3.0 1.92 6 22.4 3.5 2.03 4 0.12

n3 /n1 n3a K dK ,% n3 /n1 n3b K dK ,%

2.7 2.59 6 20.25 2.7 2.63 6 0.75
3.5 2.29 6 20.39 3.5 2.32 6 0.15
3-11



to

s
te
he
ng

ith

en
fe

-

n
o

s
o
-

a

th
tio
ic

io
ctr
p-
e
th

ax
3

di
e

fre

q
io
ly

l

el
b

sk

a

es

-

are
re-
ntial
ith

-
st

b-
ries

r-
f

ri-

ell
sol-
ed

the
ch
limi-
e-
ns
ly

s

om-

uent

d in
ct

a-
re-
rys-

ir
ls

ALEXANDER FIGOTIN AND VLADIMIR GOREN PHYSICAL REVIEW E 64 056623
cerning the multiplicity of its eigenvalues and the related
it symmetry of the corresponding eigenfunctions~see, e.g.,
@31#!. One case is a singlet state where an eigenvalue i
multiplicity 1 and the corresponding eigenfunction has a
tragonal symmetry. The other case is a doublet state w
an eigenvalue is of multiplicity 2 and two correspondi
basis eigenfunctions can be chosen to have each~at most! an
orthogonal symmetry while the pair being symmetric w
respect to the diagonal reflection.

Results of our computations are consistent with the g
eral symmetry analysis. The first, lowest branch of the de
states is a doublet: we find a pair of basis eigenfunctions~1a
and 1b! with the same~up to 14 digits! corresponding eigen
frequencyn1, both having orthogonal symmetry~of opposite
signs!. The second branch is a singlet: we see one eigenfu
tion having a tetragonal symmetry, which corresponds t
solitary eigenfrequencyn2. We identify as a third branch a
pair of singlet states~3a and 3b! where both eigenfunction
have a tetragonal symmetry@of opposite signs with respect t
the diagonal reflection~108!# while the corresponding eigen
frequencies (n3a and n3b) differ by only about 2%; such a
pair of states can be called quasidoublet~see @31#! and
thought of as a result of splitting of a doublet state of
hypothetical operator with an octagonal~higher! symmetry
caused by the actual operatorM having a tetragonal~lower!
symmetry. The fourth branch is a doublet~4a and 4b! with
an eigenfrequencyn4 ~similarly to the first one!.

V. CONCLUSIONS

We have developed a version of the resolvent method
guarantees a stable convergence of the iterative computa
of localized defect modes of H polarization in 2D photon
crystals and allows us to control the computational precis
It is based on an equivalent representation of the spe
problem in terms of the shift-inverse of the Maxwellian o
erator. The defect states are obtained by solving the eig
value equation for an associated compact operator with
expansion in Bloch eigenfunctions of the unperturbed M
wellian operator. This method can be also extended to
photonic crystals.

We have tested the method for a 1D two-layer perio
medium with a one-layer defect and observed a close to
ponential convergence of computations of the defect
quencies with respect to the numbersN1 and N2 of bands
retained in the expansion for the associated eigenvalue e
tion and for an auxiliary nonhomogeneous linear equat
for the perturbation of the Maxwellian operator, respective
and to the partition numberK for the discrete integration ink
within each band. An evaluated~based on the exponentia
convergence! precision of;0.1% is reached withK58 and
N1510 andN2580 orN1520 andN25100 for frequencies
near the middle of the first or of the third gap, respectiv
~see Table I!. The computations with such size arrays can
performed within a few minutes of the CPU time on a de
top computer. Comparing results of these computations
the defect frequencies in the first three gaps with the ex
~up to 10210%) results of the propagation matrix~analytical!
method@14#, we find that an actual error is at most two tim
05662
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greater than an evaluated~based on the exponential hypoth
esis! error of ;0.1%.

We apply the method to a 2D square lattice of squ
dielectric rods in a dielectric background with a one-rod
placement defect and, again, observe a close to expone
convergence of computations of the defect frequencies w
respect to the partition numberK and to the truncation num
bers N1 and N2. Computing defect frequencies in the fir
gap with controlled evaluated precision of;1% at increas-
ing values of the defect-medium dielectric contrast, we o
serve four branches of defect modes of various symmet
rising at the top of the gap and~eventually! vanishing at its
bottom. An evaluated~based on the exponential conve
gence! precision of;1% for frequencies near the middle o
a gap is reached withK56 andN155 andN2510 for the
first ~doublet! branch,N1510 andN2530 for the second
~singlet! branch, andN1530 and N2560 for the third
~quasidoublet! branch~see Table I and Fig. 2!. Such compu-
tations take from;0.3 min ~for the first branch! to ;1 min
~for the second branch! to ;10 min ~for the third branch! of
real time on four processors of a parallel computer SGI O
gin2000.

The data concerning the configuration of the primitive c
of the periodic medium and of the defect enter these re
vent method computations in the form of the unperturb
frequency spectrum and the matrix of perturbation of
Maxwellian operator with respect to the basis of Blo
eigenfunctions. These data are obtained based on the pre
nary solution of the spectral problem for the periodic m
dium. Using the basis of analytically known eigenfunctio
of an auxiliary periodic operator for the case of relative
small spacing between the rods of the 2D lattice~as de-
scribed in Sec. A 3!, the subsystem of Bloch eigenfunction
~and of the corresponding eigenvalues! of a size sufficient for
obtaining the above results for the defect states can be c
puted with the precision of;1% within a few minutes of the
CPU time on an advanced desktop computer. Subseq
computations~as described in Sec. IV B 2! of the correspond-
ing perturbation matrix for a symmetric defect take;30 min
of real time on eight processors of Origin2000.

In summary, the resolvent method developed and teste
this work allows high precision computations of the defe
modes of H polarization in 2D photonic crystals within re
sonable CPU time using widely available computer
sources. This method can be extended to 3D photonic c
tals.
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APPENDIX

1. Compactness ofS operator for the resolvent method

a. Schrödinger’s spectral problem

Compactness of the correspondingSoperator~see Sec. I!,

S~l!52~H02lI !21H1 , ~A1!
3-12
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where

H052aD1U0~rW !, H15U1~rW ! ~A2!

(a.0 is a constant! with localized ~square-integrable!
U1(rW), can be shown based on the exponential decay inurW8

2rWu ~and square-integrability atrW85rW) of the Green’s func-
tion G(rW8,rW) @the kernel of the integral representation of t
resolvent (H02lI )21#. Because of that@22#,

Tr~S†S!5E drW8E drWuG~rW8,rW !u2uU1~rW !u2

,bE drWuU1~rW !u2,`, ~A3!

whereb.0 is a constant@i.e., S is a Hilbert-Schmidt opera
tor, see item~7! of list in Sec. A 2#.

b. Maxwell’s spectral problem

We restrict our analysis to H-field formulation of th
spectral problem.~For E-field formulation, a Schro¨dinger’s-
like representation of the direct resolvent approach is p
sible, see Sec. I.! The unperturbed and the perturbed Ma
wellian operators are

M05¹W 3«0
21~rW !¹W 3 ~A4!

and

M5¹W 3«21~rW !¹W 3, ~A5!

correspondingly, with a bounded positive function«0(rW) or
«(rW), and the perturbation operator is

M15M2M05¹W 3g~rW !¹W 3 ~A6!

with a localized bounded functiong(rW)5«21(rW)2«0
21(rW).

We do the analysis in terms of a general 3D vector c
but it also applies to 1D (d51) or 2D (d52) systems as in
Secs. II A and II B where the spectral problem reduces t
scalar Maxwellian operator~see Sec. II C!:

M52“ r•«21~r !“ r , ~A7!

r5xex , “ r5ex]x for d51, ~A8!

r5xex1yey , “ r5ex]x1ey]y for d52. ~A9!

(i) Resolvent approach with the shift-inverse.When the
resolvent method is applied to the spectral problem in te
of the shift inverse of the Maxwellian operator~see Sec.
III A !, the correspondingS operator can be expressed as f
lows @see Eq.~63!#:

S~m!5~m1ms!~M02mI !21~M01msI !W1 ~A10!

~with m in a gap of the spectrum of the unperturbed opera
M0), wherems.0 is a constant and@see Eqs.~67!, ~52!, and
~56!#
05662
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W152~M1msI !
21M1~M01msI !

21 ~A11!

is a perturbation of the shift inverse of the Maxwellian o
erator.

The operator W1 is a compact ~moreover, Hilbert-
Schmidt! operator@23,24,30#. It is sufficient to prove this for
the case where the function

g̃~rW !5g~rW !«0~rW ! ~A12!

is smooth.„Indeed@see@30# and items~4! and ~5! of list in
Sec. A 2 and Eqs.~A4!–~A6! of this paper#, any function
g(rW) can by represented as a sum of a non-negative func
and a nonpositive function, and any localized sign-defin
function g(rW) can be circumscribed by such localized fun
tion gs(rW) of the same sign that the corresponding functi
g̃s(rW) is smooth.… Then, we can extract a term withM0 from
M1 @see Eqs.~A4!, ~A6!, and~A12!#,

M15g̃~rW !M01„¹W g̃~rW !…3«0
21~rW !¹W 3, ~A13!

and obtain

W152~M1msI !
21g̃~rW !M0~M01msI !

21

2~M1msI !
21

„¹W g̃~rW !…3«0
21~rW !¹W 3~M01msI !

21.

~A14!

Both summands inW1 are Hilbert-Schmidt operators@30#
because@see items~9! and ~10! of list in Sec. A 2# each of
them is a product of a Hilbert-Schmidt operator and
bounded operator. The Hilbert-Schmidt factors are of
form

C152~M1msI !
21w~rW ! ~A15!

with a localized bounded functionw(rW)5g̃(rW) in the first
summand orw(rW)5„¹W g̃(rW)…«0

21/2(rW) in the second sum-
mand. Such an operatorC1 is a Hilbert-Schmidt operator
similarly to S operator for Schro¨dinger’s problem@see Eq.
~A1! with ~A2!#; this can be shown based on the exponen
decay~and square integrability! of the Green’s function for
the resolvent (M2lI )21 ~see@24,32# for 3D vector case, or
@33# for 1D or 2D scalar case!. The remaining factor in the
first summand,

B15M0~M01msI !
21 ~A16!

is obviously bounded because@see item~11! of list in Sec.
A 2# the spectrum ofM0 is non-negative. The remaining fac
tor in the second summand

B25«0
21/2~rW !¹W 3~M01msI !

21 ~A17!

is also bounded because@see items~11! and ~12! of list in
Sec. A 2#, accounting (¹W 3)†5¹W 3,

B2
†B25~M01msI !

21M0~M01msI !
215M0~M01msI !

22

~A18!
3-13
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is obviously bounded for non-negativeM0.
Finally, operator S is compact ~moreover, Hilbert-

Schmidt! operator@see items~10! and~11! of list in Sec. A 2#
being a product of a bounded operator (m1ms)(M0
1msI )(M02mI )21 and a Hilbert-Schmidt operatorW1.

(ii) Direct resolvent approach. If one tries to apply the
resolvent method directly to the Maxwellian operator, t
correspondingS operator~see Sec. I! would be

S~l!52~M02lI !21M1 , ~A19!

which is not compact. To prove this, it is enough to consi
the case of a smooth functiong̃(rW) ~A12!, where we can
extract the term withM0 from M1 @see Eq.~A13!# and, rep-
resentingM05(M02lI )1lI , obtain

S†~l!52M1~M02lI !2152g̃~rW !I2lg̃~rW !~M02lI !21

2„¹W g̃~rW !…3«0
21~rW !¹W 3~M02lI !21. ~A20!

The first summand inS† is an operator of multiplication by a
function and is not compact because@see item~3! of list in
Sec. A 2# it has continuous spectrum. Therefore, the opera
S as a whole is not compact~as stated in@23,24#!, because
~see items 4 and 6 of list in Sec. A2! the remainder of the
sum is a compact operator.

Indeed, the second summand inS†,

C252lg̃~rW !~M02lI !21 ~A21!

with a localized bounded functiong̃(rW), is similar to the
operatorC1 ~A15! ~with an arbitraryl in a gap ofM0 in-
stead ofl52ms) compactness of which is discussed in S
A1bi.

The third summand inS†,

C352«0
21~rW !„¹W g̃~rW !…3¹W 3~M02lI !21, ~A22!

is also compact~as stated in@23#!. Indeed@see item~8! of list
in Sec. A 2#, accounting that @„¹W g̃(rW)…3¹W 3#†

52¹W 3„¹W g̃(rW)…3,

C3
†C352~M02lI !21¹W 3„¹W g̃~rW !…3«0

22~rW !„¹W g̃~rW !…3¹W

3~M02lI !21 ~A23!

is a Hilbert-Schmidt operator as it is of the same ty
as the operatorW1 @see Eq.~A11! with ~A6!# of perturbation
of the shift inverse of the Maxwellian operator@see Sec.
A 1 b ~i!#, with a localized bounded tensor functio

«0
22(rW)„¹W g̃(rW)…3„¹W g̃(rW)…3 in place of the scalar function

g(rW) ~and with an arbitraryl in a gap ofM0 instead of
l52ms).

2. Compact and bounded operators in Hilbert space

We list here some statements of the general theory
linear operators~see, e.g.,@34,35#!, to which we refer in our
analysis of the resolvent method.
05662
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~1! Every compact operator is a normwise limit of a s
quence of finite rank operators.

~2! For any compact operatorC its reduction to an
N-dimensional subspaceLN converges normwise to the op
erator itself asN→` andLN becomes the entire space,

PNCPN→C as PN→I , ~A24!

wherePN is the projector onLN . ~This follows from item 1
above, accounting that the property~A24! holds for any fi-
nite rank operator in place ofC!.

~3! Spectrum of any compact operator is discrete w
finite multiplicity of each nonzero eigenvalue and with ze
being the only possible limit point of the spectrum.

~4! Linear combination of two compact operators is
compact operator.

~5! An operator confined between zero and a comp
operator is also compact.

~6! An operator adjoint to a compact operator is also co
pact.

~7! If Tr( C†C)p,` with p>1, then the operatorC is
compact. In particular, ifp52 then suchC is called a
Hilbert-Schmidt operator.

~8! If the operatorC†C is a Hilbert-Schmidt operator, the
the operatorC is compact.~This follows from item 7 above
with p54).

~9! An operatorB is bounded if (Bc,Bc),b(c,c) for
all c with some constantb.0 independent ofc.

~10! Product of a compact operator and a bounded op
tor is compact.

~11! A self-adjoint operator is bounded if its spectrum
bounded.

~12! If the operatorB†B is bounded, then the operatorB is
also bounded.

3. Solution of the spectral problem for the rectangular
geometry 2D periodic medium

We solve the spectral problem~35! for a 2D periodic
medium of the type~96!, following the method developed in
@28,29#. If the thicknessL2

a of each wall of the grid is much
smaller then the corresponding dimensionL1

a of the rod,

La5L2
a/L1

a!1, ~A25!

then the Maxwellian operatorM0 ~32! with ~96! is relatively
close@in the functional sense~30!# to the following auxiliary
operatorM̃0:

M̃052 (
a5x,y

]a

1

«0
a~r a!

]a , ~A26!

where

«0
a~r a!5e1 , r aP~0,L1

a!,

«0
a~r a!5e2 , r aP~L1

a ,La!. ~A27!
3-14
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Therefore, the system of eigenfunctions$c̃0(x,y)% of the
operatorM̃0,

M̃0c̃0~x,y!5m̃0c̃0~x,y!, ~A28!

can be taken as a basis for the representation of the spe
problem forM0 allowing an efficient iterative numerical so
lution.

Because the operatorM̃0 is periodic inx andy ~with the
same periodsLx andLy as the operatorM0), all analysis of
the Sec. II D concerning the structure of the spectral sys
applies toM̃0. The operatorM̃0 is a direct sum of two one
dimensional operatorsM0

a (a5x,y), each of the same form
as the operatorM0 for the 1D periodic medium studied i
Sec. IV A 1 @compare Eq.~A26! with Eq. ~A27! to Eq. ~32!
for d51 with Eq. ~80!#:

M̃05 (
a5x,y

M0
a , M0

a52]a

1

«0
a~r a!

]a . ~A29!

Due to this, the system of Bloch eigenfunctions of the ope
tor M̃0 can be found as direct product of the systems
Bloch eigenfunctions of the two operator summands@see
Eqs.~36! and ~37!#:

c̃0n,k~x,y!5 )
a5x,y

c0na ,ka

a ~r a!, ~A30!

n5~nx ,ny!, na51,2, . . . ,̀ , kaP@2p,p#,
~A31!

where the functionc0n,k
a (r a) is given by the formulas~86!–

~89! with L1,2
a in place ofL1,2 ~and r a in place ofx). Each

corresponding eigenvalue is a sum of the eigenvalues a
ciated with the factorsc0na ,ka

a (r a) @see Eq.~82!#:

m̃0~n,k!5 (
a5x,y

„n0na

a ~ka!/n1L1
a
…

2, ~A32!

where the functionn0n
a (k) is determined by the equation~84!

with L1,2
a in place ofL1,2 in Eq. ~85!. Orthonormality of the

basis system$c0n,k(x)% in L2(R) for d51 yields orthonor-
mality of the basis system$c̃0n,k(x,y)% in L2(R2) for d52
@see~50!#:

~ c̃0n,k ,c̃0n8,k8!5dn,n8d~k2k8!. ~A33!

We can reenumerate the subsystem~A30! of Bloch eigen-
functions of the operatorM̃0 for each fixedk to have the
corresponding eigenvalues~A32! in ascending order:

$c̃0n,k ,m̃0~n,k! u nx,y51,2, . . . ,̀ %

[$c̃0n,k ,m̃0~n,k! u n51,2, . . . ,̀ %

~A34!

m̃0~n11,k!>m̃0~n,k!, ~A35!
05662
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wheren enumerates all different pairs (nx ,ny) in the order of
ascend of the eigenvaluesm̃0(nx ,ny ;k), counting each mul-
tiple eigenvalue~if any! the number of times~in a row! equal
to its multiplicity @compare this to the general structure~46!
with ~47!#. There may be some multiple eigenvalues due
some extra symmetry. For example, ifL1,2

x 5L1,2
y then

m̃0(n,n8;k,k)5m̃0(n8,n;k,k) @see Eq.~A32!#.
Because the operatorsM0 andM̃0 are periodic inx andy

with the same periodsLx and Ly , respectively, the sub
system~A34! of Bloch eigenfunctions of the operatorM̃0 for
each fixedk can be used as such orthogonal basis@see Eq.
~48!# for the representation of the eigenvalue equation~40!
with ~41! for the operatorM0 in L2(Q) that the Bloch
boundary conditions~42! will be automatically satisfied for
that k. Then, each eigenfunctionc0k(x,y) of M0 represents
with its Fourier coefficients$bk(n)%n ,

c0k~x,y!5 (
n51

`

bk~n!c̃0n,k~x,y!, ~A36!

where@see Eq.~48!#

bk~n!5C2
21~ c̃0n,kuc0k!Q , ~A37!

and the equation~40! represents with the following system o
algebraic equations for the coefficients$bk(n)%n :

(
n851

`

M0k~n,n8!bk~n8!5m0~k!bk~n!, n51,2, . . . ,̀ ,

~A38!

where the matrix,

M0k~n,n8!5C2
21~ c̃0n,k ,M0c̃0n8,k!Q ~A39!

54p2E
0

Lx
dxE

0

Ly
dy

1

«o~x,y!

3 (
a5x,y

„]ac̃0n,k* ~x,y!…

3„]ac̃0n8,k~x,y!… ~A40!

@see Eqs.~48!, ~32!, ~45!, ~36!, and ~13!#, can be computed
analytically @see Eqs.~A30! and ~96!#.

The system~A38! represents the eigenvalue problem f
the matrix M0k(n,n8) (n,n851,2, . . . ,̀ ) with an infinite
discrete system of eigenvectors$bk(n8)%n8 and correspond-
ing eigenvaluesm0(k):

$$bn,k~n8!%n851
` ,m0~n,k!% ~n51,2, . . . ,̀ !.

~A41!

Because each of the two systems of eigenfunctions,$c0n,k%n

and $c̃0n,k%n , is orthogonal and both have the same fix
norm @see Eq.~48!#, the relation~A36! implies that the sys-
tem ~A41! of eigenvectors$bk(n)%n is orthonormal:
3-15
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(
n51

`

bn8,k~n!bn9,k~n!5dn8,n9 . ~A42!

The infinite system of homogeneous equations~A38! is
solved iteratively. Truncating the summation inn with a
numberN3, we obtain the eigenvalue problem for the fini
matrix $M0k(n,n8)% (n,n851,2, . . . ,N3) and solve it using
a specialized standard library routine, obtaining the sys
of N3 eigenvectors with corresponding eigenvalues. We
creaseN3 ~starting with N35N2) until reaching necessar
precision for the system of the firstN2 eigenvalues and cor
responding eigenvectors, which is needed for the applica
of the resolvent method~see Sec. III C!; the precision for a
vector $bn,k(n8)%n8 can be evaluated based on the norm
t
s

-

,

n

o

05662
m
-

n

f

the difference between iteration results~completed with zero
components for smallerN3). Due to closeness@in the func-
tional sense~30!# of the operatorsM0 and M̃0 @under the
condition~A25!#, we can expect that reasonable precision
the eigenvalues and eigenvectors can be reached with a
erate truncation numberN3 ~for example,N3;10N2). Then,
the corresponding approximation for each eigenfunction
the operator M0 represented with an eigenvect
$bn,k(n8)%n8 can be obtained by summation~A36! truncated
with the same numberN3:

c0n,k~x,y!' (
n851

N3

bn,k~n8!c̃0n8,k~x,y!, n51,2, . . . ,N2 .
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